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Networks Today

Reasoning about network behavior is extremely difficult. . .

Does correctness matter? The Internet is best effort...

..the end-to-end principle says that hosts are best
equipped to deal with failures!
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Servers

...due to the proliferation of devices, protocols, languages



Example: Outages

We discovered a misconfiguration on this

L
Ithub pair of switches that caused what's called a
J L 11 . 1l
ne SOCIAL CODING bridge loop”in the network.

A network change was [...] executed
incorrectly [...] more “stuck” volumes and added amazon
more requests to the re-mirroring storm web services

The malware utilized is absolutely unsophisticated [...] If
Target had had a firm grasp on its network security |[...]
they absolutely would have observed this behavior

Experienced a network connectivity issue [...] Hnited -

interrupted the airline’'s flight departures,

airport processing and reservations systems All"l]nes Aj};,;,’,/




Example: Outages

We discovered a misconfiguration on this

o
glth“b pair of switches that caused what's called a

SOCIAL CODING "bridge loop”in the network.

-ven technically sophisticated companies are struggling
to build networks that provide reliable performance.

|ne malware utilized I1s absolutely unsophisticated |[...] It
‘ Target had had a firm grasp on its network security [.. ]
they absolutely would have observed this behavior

Experienced a network connectivity issue [.. ] s —
interrupted the airline's flight departures, I.In.lted ?’3?’;
airport processing and reservations systems All"llnes X .Zi;,’/
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-xample: Cloud Computing

Would you relocate critical infrastructure to the cloud. ..

/“ga\ga\

Networks are critical for ensuring the security of many
systems. .. SO it is important they function as expected

...if your traffic was not guaran’

other tenants during periods o

o

eed to be isolated from

routine maintenance?



Software-Defined Networking

A clean-slate programmable network architecture
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A Major Trend in Networking

facebook JENRVH Ny

N Acquired for $1.2B
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frenetic

Vision: program networks using a high-level language,
generate low-level machine code using a compiler, and
verity formal properties of networks automatically
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NETKAT FIXED UP UR FLOWZ

Part |: Ox
« OpenFlow Overview

« Ox Applications

Part Il: Frenetic
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KAT Overview

KAT Applications

Part Ill: Formal methods

« Update consistency

- Verification and reasoning
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OpenFlow Architecture

Ox Controller Platform

or POX, Beacon, Floodlight, etc.
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OpenfFlow-compatible switches
Pica8, Dell, NEC, HP. and many others
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OpenfFlow-compatible switches
Pica8, Dell, NEC, HP. and many others
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Can write any packet
processing function
we want in OCam|
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OpenfFlow AP

Switch to controller:

- switch connected

e switch _disconnected
- packet in

- stats _reply

\
\
\

Controller to switch:

- packet out
- flow_mod
« sStats request



Demo: Ox Repeater



Frenetic Overview



Machine Languages

OpenFlow is a machine language

Programmers must think in terms of @

ow-level concepts such as:

« Flow tables
« Matches

\\\

e Priorities W

« [imeouts (C)
e Events

» Callbacks

Key issue: programs don't compose!



Current Controllers

(Monitor | Route | Load Balance) ; Firewall

Controller Platform
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Current Controllers

One monolithic
application

\

(Monitor | Route | Load Balance) ; Firewall

Controller Platform

Challenges:

« Writing, testing, and debugging programs
» Reusing code across applications

« Porting applications to new platforms



Language-Based Approach

oad Baance
Compiler | Run-Time System

Controller Platform




Language-Based Approach

One module
for each task

\

oad Baance
Compiler | Run-Time System

v ¢
o o B OB OB E B




Language-Based Approach

One module
for each task

\
oad alnce
Compiler | Run-Time System
Controller Platform

v ¢
58088888
Benefits:

» Easier to write, test, and debug programs
« Can reuse modules across applications
« Possible to port applications to new platforms




’rogramming Languages
Frenetic is a programming language

Programmers work in terms of
natural constructs:

e FUNCtioNs

« Predicates

- Relational operators
- Logical properties

Compiler bridges the gap between
these abstractions and their
implementations in OpenFlow




’rogramming Languages
Frenetic is a programming language

Programmers work in terms of
natural constructs:

e FUNCTIONS
e Predicates
- Relational operators |

- Logical properties Q

Compiler bridges the gap between
these abstractions and their
implementations in OpenFlow
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Network-Wide Programming

What features should an SDN language provide?

» Packet predicates
« Packet transformations
« Path construction
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Network-Wide Programming

features should an SDN language provide?
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Network-Wide Programming

What features should an SDN language provide?

th constru
th concatenation
th union

et predi
et trans

cates
‘ormations

tn 1teration

ction

.
\

-
N
—E

=
<=



NetKAl Language

f .= switch | port | ethSrc | ethDst | ...

a,b,c »=true (* false *)
false (* true ¥)
f=n (* test *)
ar || a (* disjunction ¥)
a1 && as (* conjunction ¥)
I3 (* negation ¥)
0,0,r = filter a (* filter *)
fi=n (* modification %)
01+ P2 (* union *)
015 02 (* sequence *)
o (* iteration *)




NetKAT

anguage

f .= switch | port | ethSrc | ethDst | ...

a,b,c :=true
false
f=n

ai || az
a1 && ar
I3

0,0,r = filter a
fi=n
01+ P2
D1, P2
5

if a then p; else p; &
drop = filter false

* false *)
*true *)

* test %)
disjunction *)
conjunction %)
* negation ¥)

(* filter *)
(* modification *)
(* union %)
(* sequence *)
(* iteration *)

X

X

(
(
(
(
(
(

= (flter a; p1) + (filter 13; po)
id = filter true



Demo: NetKAl Repeater
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Demo: NetKAT Firewall



Dynamic Applications

Application

Configurations

Run-Time System

v ¢
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Dynamic Applications

Application

High-level application logic

Often expressed as a finite-
state machine on network
events (topology changes,
new connections, etc.)



Dynamic Applications

Configurations

srcip=1.2.3.4, tcpdst = 22 Count, Drop
srcip=1.2.3.4, | Forwar d 1, Count
srcip=1.2.3.4, | Forwar d 2, Count
srcip=1.2.3.4 Count
tcpdst = 22 p

Network-wide packet-
orocessing function

Expressed in terms of a set
of forwarding tables, one
per switch in the network




Dynamic Applications

let swap_update_for (t : t) sw_id c_id new_table : unit Deferred.t =
let max_priority = 65535 in
let old_table = match SwitchMap.find t.edge sw_id with | Some ft -> ft | None -> [] in
let (new_table, _) = List.fold new_table ~init:([], max_priority)
~f:(fun (acc,pri) x -> ((x,pri) :: acc, pri - 1)) in
let new_table = List.rev new_table in
let del_table = List.rev (flowtable_diff old_table new_table) in
let to_flow_mod prio flow =
.FlowModMsg (SDN_OpenFlow@x@1l.from_flow prio flow) in
let to_flow_del prio flow =
.FlowModMsg ({SDN_OpenFlow®x@l.from_flow prio flow with command = DeleteStrictFlow}) in
Deferred.List.iter new_table ~f:(fun (flow, prio) ->
send t.ctl c_id (@1, to_flow_mod prio flow))
>>= fun () -> Deferred.List.iter del_table ~f:(fun (flow, prio) ->
send t.ctl c_id (@1, to_flow_del prio flow))
>>| fun () -> t.edge <- SwitchMap.add t.edge sw_id new_table

=

=

Code that manages the
rules installed on switches

Run-Time System

Translate configuration
updates into sequences of
OpenFlow instructions




Dynamic Applications

.

Forwarding elements that
implement packet-
orocessing functionality
efficiently in hardware




Demo: Ox Learning



Demo: NetKAT Learning



Reasoning in NetKAT



Language Model

Application

srcip=1.2.3.4, tcpdst = 22 Count, Drop
srcip=1.2.3.4, | Forwar d 1, Count
srcip=1.2.3.4, | Forwar d 2, Count
srcip=1.2.3.4 Count
tcpdst = 22 p

Network-wide packet-
orocessing function

Expressed in terms of a set
of forwarding tables, one
per switch in the network




Encoding Tables

Forwarding tables can be expressed as NetKA

Openflow Normal Form (ONF)

fwd == f1:=n1;. . fe=nk + fwd
| drop

pat z=1=n; pat
| true

tol = if pat then fwd else tbl
| drop

policies



Encoding Tables

Forwarding tables can be expressed as NetKAT policies

Openflow Normal Form (ONF) dstport-22 orop
]C\/\/d = ﬂ:: Nis...; fk:nk 4 f\/\/d srcip=10.0.0.0/8 Forward 1
‘ drOP * Forward 2

pat z=1=n; pat

[ true if dstport=22 then drop

else if srcip=10.0.0.1 then port :=1
tol = if pat then fwd else tbl else if true then port :=2

| drop else drop



Encoding Tables

Forwarding tables can be expressed as NetKAT policies

Openflow Normal Form (ONF) dstport-22 orop
]C\/\/d = ﬂ:: Nis...; fk:nk 4 f\/\/d srcip=10.0.0.0/8 Forward 1
‘ drOP * Forward 2

at :==f=n; pat
P P if dstport=22 then drop

| true e
else if srcip=10.0.0.1 then port :=1
tol = if pat then fwd else tbl else if true then port :=2
| drop else drop

NetKAT compiler rewrites (local) policies into tables

This encoding also facilitates using NetKAT as the
‘composition substrate” for other platforms
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Encoding Topologies

_inks can be modeled as simple _—= \J
oolicies that forward packets ‘|' S~ —F e
from one end to the other, and .

. - - - - topo
‘opologies as unions of links

Topology Normal Form

Ipred = switch=n; port=n
Ipol = switch:=n; port:=n
ink == lpred; lpol

topo = link + topo
| drop



Encoding Topologies

_inks can be modeled as simple - _—= L
oolicies that forward packets T~z —+ =
from one end to the other, and > .
topologies as unions of links topo
- | 2 = 1 2 =
Topology Normal Form <+ « <«
A 3 C

Ipred = switch=n; port=n

Ipol = switch:=n; port:=n switch=A; port=1; switch:=B; port:=2 +

link == lpred; Ipol switch=B; port=2; switch:=A; port:=1 +
switch=B; port=1; switch:=C; port:=2 +
switch=C; port=2; switch:=B; port:=1 +
drop

topo = link + topo
| drop



Encoding Networks

Putting all these pieces together,
an entire network can be modeled
by interleaving policy and
topology processing steps
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Encoding Networks

Putting all these pieces together, policy
an entire network can be modeled -

by interleaving policy ana N
topology processing steps S~

I
—
<

N — N

topo

id
+

(policy; topo)
+

(policy; topo; policy; topo)
+
(policy; topo; policy; topo; policy; topo)

+

(policy; topo)*



Semantic Foundations

Unlike previous network programming languages, the design of
NetKAT is not an accident!

'ts foundations rest upon canonical mathematical structure:

« Reqgular operators (+, ;, ¥) encode paths through topology
» Boolean operators (+,;,1) encode forwarding tables

Such structures are called Kleene Algebras with Tests (KAT)

KAT has an accompanying proof system for establishing
equivalences of the form p ~ g

Many reasoning tasks can be reduced to checking equivalences
between terms



NetKAT Proof System

Kleene Algebra Axioms

p+(@+n~((P+q) +r
P+g~g+p

D+ drop ~ p
P+p~p

p; (@; 1) ~ (p; Q)i ¥

p; @+ ~p;g+p;r
(Pp+q)r~p;r+g;r
id;p~p

o~ p;id
drop; p ~ drop

0; drop ~ drop
id+ p; p* ~p*
id+p5p~p

D+Q;r +r~r=p;q+r~r

o+ g;r+g~q=p;r+q9-~q

Boolean Algebra Axioms

a || true ~ true
all!a~true
a&&b~b&&3
a && 'a ~ false
a&&a~a

Packet Axioms

fe=n;f==n'~fi=n";fi=n
fi=n;f'=n'~f'=njfi=n
fe=n;f=n~fi=n
f=n;fi=n~f=n
fe=n;f=n'~fi=n'
f=n;f=n"~drop

dup; f=n~f=n;dup

all (b && o)~ (@]l b) &&(@]|| )

fff
fff

ifnzn'



Network-Wide Reachability

Given:
o Ingress predicate: switch = s;
o Egress predicate: switch = sy;
» Jopology:t
e Switch program: p

Check:

e switch = si; switch =521 + (p; O)* ~ (p; D*
e switch=ss; (p; t)*; switch = s2; ~ drop



Metatheory

Soundness: If = p ~Q,t
Completeness: If [p] =

Nen

[9],

[p]=[al

then = p~@



Metatheory

Soundness: It = p ~ g, then [p] =[q]
Completeness: If [p] = [gl, then = p ~

Established previously for KAT [Kozen & Smith '96]...
... but NetKAT's packet histories add extra structure




Metatheory

Soundness: It = p ~ g, then [p] =[q]
Completeness: If [p] = [gl, then = p ~

Established previously for KAT [Kozen & Smith '96]...
... but NetKAT's packet histories add extra structure

Idea: develop an alternate semantics based on a language
model, and leverage completeness of Kleene Algebra over
regular sets [Kozen '94]

Proof outline:

« Reduced NetKAT

- Reqular interpretation
- Normal form




Completeness Proof

p and g such that [p]=1[ql



Completeness Proof

p and g such that [p]=1[ql

l Reduce and Normalize
~p=pandk~q=q
l Soundness
[p] = [ql

Language Model

Normal Forms

R(P) = R(@)
l Kleene Algebra Completeness
- =4
l Transitivity
~p=q



NetKAT Automata

Can construct an automaton from a NetKAT program by
generalizing the Brzozowski derivative
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Observation Map:



NetKAT Automata

Can construct an automaton from a NetKAT program by
generalizing the Brzozowski derivative

Continuation Map: Observation Map:
Dogf=n) =0 Eoap(f =n) = [0=[ < f=n]

Dop(dup) = a * [a={] Eop(dup) =a * [a=[{]

Dep(f:=n) =0 Eqp(fi=n) = [fi=n = pg]

Dag(p + 0) = Deg(p) + Deglq) Fap(p + 0) = Eap(p) + Eap(a)

Dop(p * @) = Dap(p) * q+ 2y Eqy(p) * Dyg(a) Eap(p * ) =2y Eay(p) * Eyp(a)
Dap(p*) =Dap(p) * p* + 2y Eay(p) * Dyp(p*®) Eap(p*) = [0=B] + 2 Eay(p) * Ey(p¥)

Intuitively, these automata recognize the (quarded) strings
denoted in NetKAT's language model



NetKAT Automata

Can construct an automaton from a NetKAT program by
generalizing the Brzozowski derivative

Continuation Map: Observation Map:
Dogf=n) =0 Eoap(f =n) = [0=[ < f=n]

Dop(dup) = a * [a={] Eop(dup) =a * [a=[{]

Dep(f:=n) =0 Eqp(fi=n) = [fi=n = pg]

Dag(p + 0) = Deg(p) + Deglq) Fap(p + 0) = Eap(p) + Eap(a)

Dop(p * @) = Dap(p) * q+ 2y Eqy(p) * Dyg(a) Eap(p * ) =2y Eay(p) * Eyp(a)
Dap(p*) =Dap(p) * p* + 2y Eay(p) * Dyp(p*®) Eap(p*) = [0=B] + 2 Eay(p) * Ey(p¥)

Intuitively, these automata recognize the (quarded) strings
denoted in NetKAT's language model

Automata can be represented compactly using sparse matrices,
yielding an efficient decision procedure based on bisimulation



EXperiments

Networks:
- Topology Zoo
1
- Fatlree YU

. Stanford Backbone

Programs:
» Shortest Paths
- Stanford Policy

Queries:

- Reachability

- All-Pairs Connectivity
- Loop Freedom

- Translation Validation
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Cog Implementation



Machine Model

.-

Forwarding elements that
implement packet-
orocessing functionality
efficiently in hardware




Verified Software Stack

Formalized in Coqg | |
. Denotational semantics of NetCore iCOmp”erl/_

(an earlier version of NetKAT) g
- Operational semantics of OpenFlow | |
. Compiler w
- Run-time system :
. Correctness proofs fable
System
Featherweight
OpenFlow




Verified Software Stack

Formalized in Coqg
. Denotational semantics of NetCore

(@an earlier version of NetKAT) ha

- Operational semantics of OpenFlow | |
. Compiler w
- Run-time system

» Correctness proofs Table

Compiler

Runtime
System

Featherweigh

OpenFlow

Serialize

...... Tt




Compiler Correctness

NetCore
Highlights = o N
Compiler ‘
- Library of algebraic properties of tables , o
. New tactic for proving equalities on bags | o
» General-purpose table optimizer ' Optimizer
- Key invariant: all synthesized predicates are Iy m y
aple 4
well-formed (w.rt. protocol types) D, N

Runtime
System

Theorem
Feath igh
Theorem compile_correct : fﬁ@iﬁi@ t
forall pol sw pt pk,
netcore _eval pol sw pt pk = Sorial
table eval (compile pol sw) pt pk. '$h‘<£?ifi*”{i ,,,,,




OpenFlow Specification

42 pages...

..of informal prose

..diagrams and flow charts

..and C struct definitions




Syntax

Featherweight OpenfFlow

Devices Switch S :=S(sw, pts, RT, inp.outp, inm, out
Controller C =A@, Jjapy Ja)
Link L i=L(locsre, pks, locqst)
OpenFlow Link to Controller M = M(sw, SMS, CMS)
Packets and Locations Packet pk = abstract
Switch ID sw e N
Port ID pt €N
Location loc € sw X pt
Located Packet Ip € loc x pk
Controller Components Controller state o = abstract
Controller input relation fin € swx CM X0~ 0
Controller output relation Tomts € o~ swxSMXxo
Switch Components Rule table RT = abstract
Rule table Interpretation [RrRT] € lp—{py--Ip,[} x{CM---C
Rule table modifier ART 1= abstract
Rule table modifier interpretation apply € ART — RT — ART
Ports on switch pts € {pt1---ptn}
Consumed packets inp € {lipy---lp,[}
Produced packets outp € {lipy---lp,[}
Messages from controller inm € {SMy---SM,[}
Messages to controller outm € {{CM,--- CM,[}
Link Components Endpoints l0Csre, locgse € loc where locg. # loc st
Packets from locg. to locgst pks € [pky - - pky]
Controller Link Message queue from controller SMS € [SMy---SM,)
Message queue to controller CMS € [CM,---CM,]
Abstract OpenFlow Protocol Message from controller SM ::=FlowMod ART | PktOut pt y
Message to controller CcM ::=PktIn pt pk | BarrierReply n

Models all features related
to packet forwarding, and
all essential asynchrony

Semantics

(outp’, outm’) = [RT](lp)

S(sw, pts, RT,{|lp[} & inp, outp, inm, outm) N S(sw, pts, RT, inp, outp’ W outp, inm, outm’ & outm)
(PKT-PROCESS)

SEND-WIRE
S(sw, pts, RT, inp, {|(sw, pt, pk)[} & outp, inm, outm) | L((sw, pt), pks, loc") ( )

—  S(sw, pts, RT, inp, outp, inm, outm) | L((sw, pt), [pk] +Hpks, loc")

RECV-WIRE
L(loc, pks -+ [pk] , (sw, pt)) | S(sw, pts, RT, inp, outp, inm, outm) ( )

<swﬂ>pk> L(loc, pks, (sw,pt)) | S(sw, pts, RT, {|(sw, pt, pk)[} & inp, outp, inm, outm)

RT' = apply(ART, RT)
S(sw, pts, RT, inp, outp, {FlowMod ART[} & inm, outm) — S(sw, pts, RT", inp, outp, inm, outm)
(SwircH-FLowMoD)

pt € pts
S(sw, pts, RT, inp, outp, {{PktOut pt pk[} & inm, outm) — S(sw, pts, RT, inp, {|(sw, pt, pk)[} W outp, inm, outm)
(SwitcH-PKTOUT)

fout(a) A (S'LU, SM O',)
C(@, fons fout) | M(5w, SMS, CMS) — C(0", fomy fout) | M(sw, [SM] ++SMS, CMS)

(CTRL-SEND)

fin(sw, 0, CM) ~ o’
Clo, fins four) | M(sw, SMS, CMS + [CM]) — C(0’, fin, fout) | M(sw, SMS, CMS)

(CTRL-RECV)

SM # BarrierRequest n

M(sw, SMS +- [SM], CMS) | S(sw, pts, RT, inp, outp, inm, outm)
—  M(sw, SMS, CMS) | S(sw, pts, RT, inp, outp, {|SM [} & inm, outm)

(SwiTcH-RECV-CTRL)

M(sw, SMS + [BarrierRequest n], CMS) | S(sw, pts, RT, inp, outp, ), outm)
—  M(sw, SMS, CMS) | S(sw, pts, RT, inp, outp, ), {{BarrierReply n[} & outm)
(SWITCH-RECV-BARRIER)

SWITCH-SEND-CTRL
S(sw, pts, RT, inp, outp, inm, {| CM [} W outm) | M(sw, SMS, CMS) ( )

—  S(sw, pts, RT, inp, outp, inm, outm) | M(sw, SMS, [CM] + CMS)
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Forwarding

/* Fields to match against flows */
struct ofp_match {

uint32_t wildcards; /* Wildcard fields. */ Record Pattern : Type := MkPattern {

uintl6_t in_port; /* Input switch port. */ dlSrc : Wildcard EthernetAddress;

uint8_t dl_src[OFP_ETH_ALEN]; /* Ethernet source address. */ dlDst : Wildcard EthernetAddress;

uint8_t dl_dst[OFP_ETH_ALEN]; /* Ethernet destination address. */ dlType : Wildcard EthernetType;

uintl6_t dl_vlan; /* Input VLAN. */ dlvlan : Wildcard VLAN;

uint8_t dl_vlan_pcp; /* Input VLAN priority. */ dlVlanPcp : Wildcard VLANPriority;

uint8_t padi[1]; /* Align to 64-bits. */ nwSrc : Wildcard IPAddress;

uintle_5 dl_type; /* Ethernet frame type. */ nwDst : Wildcard IPAddress;

uint8_t nw_tos; /* IP ToS (DSCP field, 6 bits). */ nwProto : Wildcard IPProtocol;

uint8_t nw_proto; /* IP protocol or Lower 8 bits of nwTos : Wildcard IPTypeOfService;
ARP opcode. */ tpSrc : Wildcard TransportPort;

uint8_t pad2[2]; /* Align to 64-bits. */ tpDst : Wildcard TransportPort;

uint32_t nw_src; /* IP source address. */ inPort : Wildcard Port

uint32_t nw_dst; /* IP destination address. */ }.

uintle_t tp_src; /* TCP/UDP source port. */

uintle_t tp_dst; /* TCP/UDP destination port. */

s
OFP_ASSERT (sizeof(struct ofp_match) == 40);

Yetaboe Hessers Definition Pattern_inter (p p':Pattern) :=
s e ] let d1Src := Wildcard_inter EthernetAddress.eqdec (ptrnDlSrc p) (ptrnDlSrc p') in
oy eyt let dlDst := Wildcard_inter EthernetAddress.eqdec (ptrnD1Dst p) (ptrnD1Dst p') in
ovonon — let d1lType := Wildcard_inter Wordl6.eqdec (ptrnDlType p) (ptrnDlType p') in

let dlVlan := Wildcard_inter Wordl6.eqdec (ptrnDlVlan p) (ptrnDlVlan p') in

Set VU © and |

LT let dlVlanPcp := Wildcard_inter Word8.eqdec (ptrnDlVlanPcp p) (ptrnDlVlanPcp p') in
type for rewt £ ro let nwSrc := Wildcard_inter Word32.eqdec (ptrnNwSrc p) (ptrnNwSrc p') in

let nwDst := Wildcard_inter Word32.eqdec (ptrnNwDst p) (ptrnNwDst p') in
let nwProto := Wildcard_inter Word8.eqdec (ptrnNwProto p) (ptrnNwProto p') in
let nwTos := Wildcard_inter Word8.eqdec (ptrnNwTos p) (ptrnNwTos p') in

IR tpSrc := Wildcard_inter Wordl6.eqdec (ptrnTpSrc p) (ptrnTpSrc p') in
.*},M,j%x.éfﬁ"%zﬂg tpDst := Wildcard_inter Wordl6.eqdec (ptrnTpDst p) (ptrnTpDst p') in
Gimet A ] inPort := Wildcard_inter Wordl6.eqdec (ptrnInPort p) (ptrnInPort p') in
:m:

MkPattern d1lSrc dlDst dlType dlVlan dlVlanPcp
nwSrc nwDst nwProto nwTos
tpSrc tpDst
inPort.
Definition exact_pattern (pk : Packet) (pt : Wordl6.T) : Pattern :=
MkPattern
(WildcardExact (pktDlSrc pk)) (WildcardExact (pktD1Dst pk))
(WildcardExact (pktD1Typ pk))
(WildcardExact (pktDlVlan pk)) (WildcardExact (pktDlVlanPcp pk))
(WildcardExact (pktNwSrc pk)) (WildcardExact (pktNwDst pk))
(WildcardExact (pktNwProto pk)) (WildcardExact (pktNwTos pk))
(Wildcard_of_option (pktTpSrc pk)) (Wildcard_of_option (pktTpDst pk))
(WildcardExact pt).
Definition match_packet (pt : Word16.T) (pk : Packet) (pat : Pattern) : bool :=
negb (Pattern_is_empty (Pattern_inter (exact_pattern pk pt) pat)).




Detailed model of matching, forwarding, and flow table update
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“In the absence of barrier
messages, switches may
arbitrarily reorder messages to
maximize performance.”

“There is no packet output
ordering guaranteed
within a port!



Asyncnrony

“In the absence of barrier
messages, switches may
arbitrarily reorder messages to

maximize performance.”

Definition InBuf := Bag Packet.
Definition OutBuf := Bag Packet.
Definition OFInBuf := Bag SwitchMsg.
Definition OFOutBuf := Bag CtrlMsg.

“There is no packet output
ordering guaranteed
within a port!




Essential asynchrony: packet buffers, message reordering, and barriers
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(H1,2) —(S1,pt1,52) — (So,pt1,72)— (Ho572)




Weak Bisimulation

Theorem: NetCore abstract semantics is weakly bisimilar
to Featherweight OpenFlow + NetCore controller



Parameterized Weak Bisimulation

Invariants

« Safety: at all times, the rules installed on switches are a
subset of the controller function

- Liveness: the controller eventually processes all packets
diverted to it by switches

Theorem

Module RelationDefinitions :=
FWOF . FwOFRelationDefinitions.Make (AtomsAndController).

Theorem fwof abst weak bisim :
weak bisimulation
concreteStep
abstractStep
bisim relation.



Consistent Updates



Run-Time Model

let swap_update_for (t : t) sw_id c_id new_table : unit Deferred.t =
let max_priority = 65535 in
let old_table = match SwitchMap.find t.edge sw_id with | Some ft -> ft | None -> [] in
let (new_table, _) = List.fold new_table ~init:([], max_priority)
~f:(fun (acc,pri) x -> ((x,pri) :: acc, pri - 1)) in
let new_table = List.rev new_table in
let del_table = List.rev (flowtable_diff old_table new_table) in
let to_flow_mod prio flow =
.FlowModMsg (SDN_OpenFlow@x@1l.from_flow prio flow) in
let to_flow_del prio flow =
.FlowModMsg ({SDN_OpenFlow®x@l.from_flow prio flow with command = DeleteStrictFlow}) in
Deferred.List.iter new_table ~f:(fun (flow, prio) ->
send t.ctl c_id (@1, to_flow_mod prio flow))
>>= fun () -> Deferred.List.iter del_table ~f:(fun (flow, prio) ->
send t.ctl c_id (@1, to_flow_del prio flow))
>>| fun () -> t.edge <- SwitchMap.add t.edge sw_id new_table

=

=

Code that manages the
rules installed on switches

Run-Time System

Translate configuration
updates into sequences of
OpenFlow instructions




Network Updates

Challenges =
» The network is a distributed system

- Can only update one element atatime ~ ~ _

Our Approach

» Provide programmers with a construct for
updating the entire network at once

« Semantics ensures “reasonable” behavior
» Engineer efficient implementations:
- Compiler constructs update protocols

- Optimizations applied automatically
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Update Semantics

Atomic Updates

- Seem sensible...

- but costly to implement...

. and difficult to reason about, due to
behavior on in-flight packets

Per-Packet Consistent Updates

Every packet processed with old or new
configuration, but not a mixture of the two

Per-Flow Consistent Updates
Every set of related packets processed with
old or new configuration, but not a
mixture of the two

o -

&



Update Semantics

Atomic Updates . B

- Seem sensible...
- but costly to implement...

An update is per-packet consistent it and only
it it preserves all safety properties.

Per-Flow Consistent Updates

Every set of related packets processed with
old or new configuration, but not a
mixture of the two



Implementation

Two-phase commit
« Build versioned internal and edge switch

configurations
» Phase 1:Install internal configuration

« Phase 2: Install edge configuration

Pure Extension
 Update strictly adds paths

Pure Retraction
 Update strictly removes paths

Sub-space updates
« Update modifies a small number of paths

update(config,topo)

Calculate rules,
generate messsages

Raw OpenFlow
control messages



Wrapping Up



Conclusion

Lots of great PL problems in networking!

SDN is an enabling technology for this kind of research

Frenetic is a new platform for programming and reasoning about SDNS:
- Automated formal reasoning in NetKAT [POPL "14]

- Consistent updates [SIGCOMM "12]

- Machine-verified controller [PLDI "13]

Other work
- Traffic isolation [HotSDN "12]

- Joint host-network programming [SIGCOMM 13, HotNets '13]
- Declarative fault tolerance [HotSDN "13]

- Dynamic software updates [HotSDN "13]

- Configuration synthesis [SYNT "13]

- Tierless programming [HotSDN "13]
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