Dr Streamlove

or: How | Learned to Stop Worrying and Love the Flow

Viktor Klang

Chief Architect
@viktorklang

::: Typesafe

Typesafe

* Founded ~3.5 years ago

 fusion of Scalable Solutions and Scala
Solutions

* Offices in Uppsala, Lausanne and San
Francisco

* 60+ employees all over the world
* Main projects
* Play, Akka, Scala, Slick

of= Typesafe 2

My office door

of= Typesafe 3

View from my office

Agenda

* What is a Stream?

* Livedemo

* What is Reactive?

* Reactive Streams

* Akka Streams

* Live demo

* What’s next / Opportunities
* Qutro

of= Typesafe 5

What do we mean by “Stream”?

“You cannot step twice into the same stream.
For as you are stepping in,
other waters are ever flowing on to you.”

- Heraclitus

of= Typesafe 7

What is a Stream?

* Ephemeral flow of data

* Possibly unbounded in length

* Focused on describing transformation

* Can be formed into processing networks

Y
>u>87 “a3issura¥

N N ¥ AN b

of= Typesafe 8

What is a Collection?

* Oxford Dictionary:
* “a group of things or people”
* wikipedia:
* “a grouping of some variable number of data items”

* backbone.js:

* “collections are simply an ordered set of models”

» java.util.Collection:

* definite size, provides an iterator, query membership

of= Typesafe 9

User Expectations

* an lterator is expected to visit all elements
(especially with immutable collections)

* Xx.head ++ x.tail == x

* the contents does not depend on who is
processing the collection

* the contents does not depend on when the

processing happens
(especially with immutable collections)

ﬁ Typesafe

Unexpected: observed sequence depends on

°W

°W

°*W

nen the subscriber subscribed to the stream
nether the subscriber can process fast enough

nether the streams flows fast enough

java.util.stream

* Stream is not derived from Collection
“Streams differ from Collections in several ways”
* no storage
e functional in nature
* laziness seeking

* possibly unbounded

e consumable

Streams vs. Collections

* a collection can be streamed
* a stream processor can create a collection

* ... butsaying that a Stream is just a lazy
Collection evokes the wrong associations

Streams are not Collections!

Live Demo

The Four Horsemen of Reactive

0

http://reactivemanifesto.org/

http://reactivemanifesto.org/

Async Boundary

Possible Solutions

» the Traditional way: blocking calls

Possible Solutions

* the Push way: buffering and/or dropping

Possible Solutions

* the Reactive way:
non-blocking & non-dropping & bounded

Reactive Streams Initiative

“Reactive Streams is an initiative to provide a
standard for asynchronous stream processing
with non-blocking back pressure on the JVM.”

- reactive-streams.org

http://reactive-streams.org

Collaboration between Engineers

* Bjorn Antonsson - Typesafe Inc. Dr. Roland Kuhn - Typesafe Inc.

* Gavin Bierman - Oracle Inc. Doug Lea - SUNY Oswego

 Jon Brisbin - Pivotal Software Inc. * Stephane Maldini - Pivotal Software Inc.

* George Campbell - Netflix, Inc Norman Maurer - Red Hat Inc.

* Ben Christensen - Netflix, Inc Erik Meijer - Applied Duality Inc.

* Mathias Doenitz - spray.io * Todd Montgomery - Kaazing Corp.
* Marius Eriksen - Twitter Inc. * Patrik Nordwall - Typesafe Inc.

e Tim Fox - Red Hat Inc. « Johannes Rudolph - spray.io

* Viktor Klang - Typesafe Inc. * Endre Varga - Typesafe Inc.

ﬁ Typesafe

Motivation

» all participants face the same basic problem

all are building tools for their community
* a common solution benefits everybody
* interoperability to make best use of efforts

* e.g. use Reactor data store driver with Akka
transformation pipeline and Rx monitoring to drive a
vert.x REST API (purely made up, at this point)

* propose to include in future JDK
See also: Jon Brisbin’s post on “Tribalism as a Force for Good”

of= Typesafe 23

Recipe for Success

* minimal interfaces—essentials only
* rigorous specification of semantics
» TCK for verification of implementation

» complete freedom for many idiomatic APIs

Reactive Streams

* asynchronous & non-blocking
* flow of data

* flow of demand

* minimal coordination and contention
* message passing allows for distribution across

* applications, nodes, CPUs, threads, actors

A Data Market using Supply & Demand

demand

* data elements flow downstream
» demand flows upstream

* data elements flow only when there is demand
* datain flight is bounded by signaled demand

* recipientis in control of maximal incoming data rate

f Typesafe

Dynamic Push-Pull

demand

* “bush”—when consumer is faster

* “pull”—when producer is faster

* switches automatically between these
* batching demand allows batching data

f Typesafe

Explicit Demand: One-to-many

------- demand Caeee
m w= w data .A.d - e
o.. '
R 4
0...'
oooooooo-~‘.o.o'o£ooo.< o 0o 0

Splitting the data means merging the demand

ﬁ Typesafe

Explicit Demand: Many-to-one

RS
QR
. ... &.‘...-........ >

--»---.-----

Merging the data means splitting the demand

ﬁ Typesafe

The Meat: Scala

trait Publisher[T] {
def subscribe(sub: Subscriber[T]): Unit
}
trait Subscription {
def request(n: Int): Unit
def cancel(): Unit
}
trait Subscriber[T] {
def onSubscribe(s: Subscription): Unit
def onNext(e: T): Unit
def onError(t: Throwable): Unit
def onComplete(): Unit

}

f Typesafe

The dessert: Scala

trait Processor[T, R] extends Subscriber[T]
with Publisher[R]

The Meat: Java

public interface Publisher<T> {
public void subscribe(Subscriber<T> s);
}
public void Subscription {
public void request(Int n);
public void cancel();
}
public interface Subscriber<T> {
public void onSubscribe(Subscription s);
public void onNext(T t);
public void onError(Throwable t);
public void onComplete();

}

ﬁ Typesafe

The dessert: Java

public interface Processor<T, R>
extends Subscriber<T>, Publisher<R> {

}

How does it Connect?

Publisher Subscribey

. Subscription

How does it Flow?

Publisher Subscribey

Elements

. Elements

f Typesafe

How does it Complete?

Publisher Subscribey

Elements

How does it Fail?

Publisher Subscribey

Elements

Akka Streams

WAIT! What is akka ?

Akka

* Akka's unit of computation is called an Actor
* Akka Actors are purely reactive components:

* an address

* a mailbox

* a current behavior

* local storage
* Scheduled to run when sent a message
 Each actor has a parent, handling its failures
 Each actor can have 0..N “child” actors

ﬁ Typesafe

Akka Actors

* An actor processes a message at a time

* Multiple-producers & Single-consumer

* The overhead per actor is about ~450bytes

* Run millions of actors on commodity hardware

* Akka Cluster currently handles ~2500 nodes

* 2500 nodes x millions of actors

“ought to be enough for anybody”

Actor model fundamentals

* CREATE(behavior)

* Creates a new actor

 BECOME(behavior)

* Changes the actors behavior for the next message

» SEND(message)

* Sends a message asynchronously and non-blocking to an
actor

Actor model augmentations

* SUPERVISE(actor)

* Lets an actor handle the failure(s) of another actor

* WATCH(actor)

* Lets an actor observe the termination of another actor

Actor Messages vs Failures

[Parent J

Failures / Recovery

Messages

Replies

Actor Hierarchies
Guardian System Actor

| system.actorOf(fooProps,“Foo”)

Actor Paths

Guardian System Actor

Canonical papers

* Carl Hewitt; Peter Bishop; Richard Steiger
(1973). A Universal Modular Actor Formalism
for Artificial Intelligence. 1JCAI.

* Gul Agha (1986). Actors: A Model of Concurrent
Computation in Distributed Systems. Doctoral
Dissertation. MIT Press.

Akka Streams

» powered by Akka Actors because
e execution
* distribution

* resilience

* Typesafe (pun intended) streaming through
Actors with bounded buffering

* Flow & Duct DSL is a lifted representation
* Uses pluggable materialisation

ﬁ Typesafe

Akka HTTP Server Overview

user handler

Akka HTTP Server Part 1

val requestProducer =
Flow(tcpConn.inputStream)
.transform(rootParser)
.splitWhen(_.isInstanceOf[MessageStart])
.headAndTail // Flow[(Start, Producer][..])]
.tee(bypassConsumer)
.collect {
case (x: RequestStart, entityParts) =>
HttpServerPipeline.constructRequest(x,
entityParts) }
.toProducer (materializer)

f Typesafe

Akka HTTP Server Part 2

val (bypassConsumer, bypassProducer) =
Duct[(RequestOutput, Producer[RequestOutput])]
.collect[MessageStart with RequestOutput]
{ case (x: MessageStart, _) => x }
.build(materializer)

Akka HTTP Server Part 3

val responseConsumer =
Duct[HttpResponse]

.merge(bypassProducer)
.transform(applyApplicationBypass)
.transform(rendererFactory.newRenderer)
. flatten(concat)
.transform(logErrors)
.toProducer (materializer)
.produceTo(tcpConn.outputStream)

Akka HTTP server Part 4

val logErrors =
new Transformer[ByteString, ByteString] {
def onNext(element: ByteString) =
element :: Nil
override def onError(cause: Throwable) =
log.error(cause, '"Response stream error'")

Advanced Live Demo

What’s next for Akka Streams?

Opportunity: API

* Current APl is minimal

* Establish core functionality and take it from there

* Naming: Use established terminology or
simplified?

 Both Scala and Java APIs

* Allows for use by other JVM-hosted languages

Opportunity: Self-tuning back pressure

* Each processing stage can know
* Latency between requesting more and getting more
* Latency for internal processing

* Behavior of downstream demand
* Latency between satisfying and receiving more
 Trends in requested demand (patterns)

* Lock-step
 N-buffered
e N+ X-buffered

e “chaotic”

Opportunity: Operation Fusion

* Compile-time, using Scala Macros
* filter ++ map == collect
* map ++ filter == collect?
* Run-time, using intra-stage simplification
* Rule: <any> ++ identity == <any>
Rule: identity ++ <any> == <any>
* filter ++ dropUntil(cond) ++ map
* filter ++ identity ++ map == collect

ﬁ Typesafe

Opportunity: Operation Elision

* Compile-time, using Scala Macros
* fold ++ take(n where n>0) ==fold
* drop(0) == identity
* <any> concat identity == <any>

* Run-time, using intra-stage simplification
* map ++ dropUntil(cond) ++ take(N)
* map ++ identity ++ take(N)
* map ++ take(N)

ﬁ Typesafe

Opportunity: Execution optimizations

* synchronous intra-stage execution N steps
then trampoline and/or give control to other
Thread / Flow

* We already do inter-stage execution reduction

Opportunity: Distributed Streams

* Encode

protocol

* Possi

Reactive Streams as a transport

nility to run over

* TCP
* UDP
* ... essentially any bidirectional channel

* MUX-ing streams

* Materialize a Flow on a cluster of Akka nodes

ﬁ Typesafe

Outro: How do | get my hands on this?

* http://reactive-streams.org/
* https://github.com/reactive-streams
* Early Preview is available:

"org.reactivestreams" % '"reactive-streams-spi" % "0.3"
"com.typesafe.akka" %% "akka-stream-experimental" % "0.3"

* check out the Activator template

"Akka Streams with Scala!"
(https://github.com/typesafehub/activator-akka-stream-scala)

http://reactive-streams.org/
https://github.com/reactive-streams
https://github.com/typesafehub/activator-akka-stream-scala

::: Typesafe

©Typesafe 2014 - All Rights Reserved

