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Typesafe

• Founded ~3.5 years ago 
• fusion of Scalable Solutions and Scala 

Solutions 
• Offices in Uppsala, Lausanne and San 

Francisco 
• 60+ employees all over the world 
• Main projects 
• Play, Akka, Scala, Slick
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My office door
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View from my office
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Agenda

• What is a Stream? 
• Live demo 
• What is Reactive? 
• Reactive Streams 
• Akka Streams 
• Live demo 
• What’s next / Opportunities 
• Outro
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What do we mean by “Stream”?
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“You cannot step twice into the same stream. 
  For as you are stepping in, 
  other waters are ever flowing on to you.” 

- Heraclitus



What is a Stream?

• Ephemeral flow of data 
• Possibly unbounded in length 
• Focused on describing transformation 
• Can be formed into processing networks
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What is a Collection?

• Oxford Dictionary: 
• “a group of things or people” 

• wikipedia: 
• “a grouping of some variable number of data items” 

• backbone.js: 
• “collections are simply an ordered set of models”  

• java.util.Collection: 
• definite size, provides an iterator, query membership
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User Expectations

• an Iterator is expected to visit all elements 
(especially with immutable collections) 
• x.head ++ x.tail == x 
• the contents does not depend on who is 

processing the collection 
• the contents does not depend on when the 

processing happens 
(especially with immutable collections)
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Unexpected: observed sequence depends on

• when the subscriber subscribed to the stream 
• whether the subscriber can process fast enough 
• whether the streams flows fast enough
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java.util.stream

• Stream is not derived from Collection 
“Streams differ from Collections in several ways” 
• no storage 
• functional in nature 
• laziness seeking 
• possibly unbounded 
• consumable
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Streams vs. Collections

• a collection can be streamed 
• a stream processor can create a collection 
• … but saying that a Stream is just a lazy 

Collection evokes the wrong associations
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Streams are not Collections!



Live Demo



Reactive  Applications

The Four Horsemen of Reactive
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http://reactivemanifesto.org/

http://reactivemanifesto.org/


The Problem: 
!

Getting Data across an Async Boundary



Possible Solutions

• the Traditional way: blocking calls
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Possible Solutions

!

• the Push way: buffering and/or dropping
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Possible Solutions

!

!

• the Reactive way: 
non-blocking & non-dropping & bounded
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Reactive Streams Initiative
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“Reactive Streams is an initiative to provide a 
standard for asynchronous stream processing 
with non-blocking back pressure on the JVM.” 

- reactive-streams.org

http://reactive-streams.org


Collaboration between Engineers

• Björn Antonsson – Typesafe Inc. 

• Gavin Bierman – Oracle Inc. 

• Jon Brisbin – Pivotal Software Inc. 

• George Campbell – Netflix, Inc 

• Ben Christensen – Netflix, Inc 

• Mathias Doenitz – spray.io 

• Marius Eriksen – Twitter Inc. 

• Tim Fox – Red Hat Inc. 

• Viktor Klang – Typesafe Inc.
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• Dr. Roland Kuhn – Typesafe Inc. 

• Doug Lea – SUNY Oswego 

• Stephane Maldini – Pivotal Software Inc. 

• Norman Maurer – Red Hat Inc. 

• Erik Meijer – Applied Duality Inc. 
• Todd Montgomery – Kaazing Corp. 

• Patrik Nordwall – Typesafe Inc. 

• Johannes Rudolph – spray.io 

• Endre Varga – Typesafe Inc.



Motivation

• all participants face the same basic problem 
• all are building tools for their community 
• a common solution benefits everybody 
• interoperability to make best use of efforts 
• e.g. use Reactor data store driver with Akka 

transformation pipeline and Rx monitoring to drive a 
vert.x REST API (purely made up, at this point) 

• propose to include in future JDK
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See also: Jon Brisbin’s post on “Tribalism as a Force for Good”



Recipe for Success

• minimal interfaces—essentials only 
• rigorous specification of semantics 
• TCK for verification of implementation 
• complete freedom for many idiomatic APIs
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Reactive Streams

• asynchronous & non-blocking 
• flow of data 
• flow of demand 

• minimal coordination and contention 
• message passing allows for distribution across 
• applications, nodes, CPUs, threads, actors
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A Data Market using Supply & Demand

• data elements flow downstream 
• demand flows upstream 
• data elements flow only when there is demand 
• data in flight is bounded by signaled demand 
• recipient is in control of maximal incoming data rate

26

Publisher Subscriber

data

demand



Dynamic Push–Pull

• “push”—when consumer is faster 
• “pull”—when producer is faster 
• switches automatically between these 
• batching demand allows batching data

27

Publisher Subscriber

data

demand



Explicit Demand: One-to-many
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demand

data

Splitting the data means merging the demand



Explicit Demand: Many-to-one
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Merging the data means splitting the demand



The Meat: Scala
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trait Publisher[T] { 
  def subscribe(sub: Subscriber[T]): Unit 
} 
trait Subscription { 
  def request(n: Int): Unit 
  def cancel(): Unit 
} 
trait Subscriber[T] { 
  def onSubscribe(s: Subscription): Unit 
  def onNext(e: T): Unit 
  def onError(t: Throwable): Unit 
  def onComplete(): Unit 
}



The dessert: Scala
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!
!
!
!
!
trait Processor[T, R] extends Subscriber[T] 
                         with Publisher[R]



The Meat: Java
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public interface Publisher<T> { 
  public void subscribe(Subscriber<T> s); 
} 
public void Subscription { 
  public void request(Int n); 
  public void cancel(); 
} 
public interface Subscriber<T> { 
  public void onSubscribe(Subscription s); 
  public void onNext(T t); 
  public void onError(Throwable t); 
  public void onComplete(); 
}



The dessert: Java
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!
!
!
!
!
public interface Processor<T, R> 
  extends Subscriber<T>, Publisher<R> { 
}



How does it Connect?

34

SubscriberPublisher

subscribe

onSubscribeSubscription



How does it Flow?
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SubscriberPublisher

request

onNextElements

request

onNextElements

request



How does it Complete?
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SubscriberPublisher

request

onNextElements

onComplete



How does it Fail?
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SubscriberPublisher

request

onNextElements

request

onError
☠



Akka Streams



WAIT! What is             ?
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Akka

• Akka's unit of computation is called an Actor  
• Akka Actors are purely reactive components: 
• an address 
• a mailbox 
• a current behavior 
• local storage 

• Scheduled to run when sent a message 
• Each actor has a parent, handling its failures 
• Each actor can have 0..N “child” actors
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Akka Actors

• An actor processes a message at a time 
• Multiple-producers & Single-consumer 

• The overhead per actor is about ~450bytes 
• Run millions of actors on commodity hardware 

• Akka Cluster currently handles ~2500 nodes 
• 2500 nodes × millions of actors                                                          

=                                                                                                               
“ought to be enough for anybody”
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Actor model fundamentals

• CREATE(behavior) 
• Creates a new actor 

• BECOME(behavior) 
• Changes the actors behavior for the next message 

• SEND(message) 
• Sends a message asynchronously and non-blocking to an 

actor
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Actor model augmentations

• SUPERVISE(actor) 
• Lets an actor handle the failure(s) of another actor 

• WATCH(actor) 
• Lets an actor observe the termination of another actor

46



Actor Messages vs Failures
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Child

Parent

Messages

Replies

Failures / Recovery



Actor Hierarchies
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system.actorOf(fooProps, “Foo”)

A

B

BarFoo

C

B E

A

D
C

Guardian System Actor

context.actorOf(aProps, “A”)



Actor Paths
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/Foo

/Foo/A
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/Foo/A/D

Guardian System Actor



Canonical papers

• Carl Hewitt; Peter Bishop; Richard Steiger 
(1973). A Universal Modular Actor Formalism 
for Artificial Intelligence. IJCAI. 
• Gul Agha (1986). Actors: A Model of Concurrent 

Computation in Distributed Systems. Doctoral 
Dissertation. MIT Press.
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Akka Streams

• powered by Akka Actors because 
• execution 
• distribution 
• resilience 

• Typesafe (pun intended) streaming through 
Actors with bounded buffering 
• Flow & Duct DSL is a lifted representation 
• Uses pluggable materialisation
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Akka HTTP Server Overview

52

TCP  Connection

pa
rs
in
g

re
nd

er
in
g

bypass

user  handler



Akka HTTP Server Part 1
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val requestProducer = 
 Flow(tcpConn.inputStream) 
  .transform(rootParser) 
  .splitWhen(_.isInstanceOf[MessageStart]) 
  .headAndTail // Flow[(Start, Producer[…])] 
  .tee(bypassConsumer) 
  .collect { 
    case (x: RequestStart, entityParts) => 
      HttpServerPipeline.constructRequest(x,  
        entityParts) } 
  .toProducer(materializer)



Akka HTTP Server Part 2
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val (bypassConsumer, bypassProducer) = 
 Duct[(RequestOutput, Producer[RequestOutput])] 
  .collect[MessageStart with RequestOutput] 
    { case (x: MessageStart, _) => x } 
  .build(materializer)



Akka HTTP Server Part 3
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val responseConsumer = 
 Duct[HttpResponse] 
  .merge(bypassProducer) 
  .transform(applyApplicationBypass) 
  .transform(rendererFactory.newRenderer) 
  .flatten(concat) 
  .transform(logErrors) 
  .toProducer(materializer) 
  .produceTo(tcpConn.outputStream)



Akka HTTP server Part 4
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val logErrors = 
  new Transformer[ByteString, ByteString] { 
    def onNext(element: ByteString) = 
      element :: Nil 
    override def onError(cause: Throwable) = 
      log.error(cause, "Response stream error") 
  } 



Advanced Live Demo



What’s next for Akka Streams?



Opportunity: API

• Current API is minimal 
• Establish core functionality and take it from there 

• Naming: Use established terminology or 
simplified? 
• Both Scala and Java APIs 
• Allows for use by other JVM-hosted languages
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Opportunity: Self-tuning back pressure

• Each processing stage can know 
• Latency between requesting more and getting more 
• Latency for internal processing 
• Behavior of downstream demand 
• Latency between satisfying and receiving more 
• Trends in requested demand (patterns) 

• Lock-step 
• N-buffered 
• N + X-buffered 
• “chaotic”
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Opportunity: Operation Fusion

• Compile-time, using Scala Macros 
• filter ++ map == collect 
• map ++ filter == collect? 

• Run-time, using intra-stage simplification 
• Rule: <any> ++ identity == <any> 

Rule: identity ++ <any> == <any> 
• filter ++ dropUntil(cond) ++ map 
• filter ++ identity ++ map == collect
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Opportunity: Operation Elision

• Compile-time, using Scala Macros 
• fold ++ take(n where n > 0) == fold 
• drop(0) == identity 
• <any> concat identity == <any> 

• Run-time, using intra-stage simplification 
• map ++ dropUntil(cond) ++ take(N) 
• map ++ identity ++ take(N) 
• map ++ take(N)
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Opportunity: Execution optimizations

• synchronous intra-stage execution N steps 
then trampoline and/or give control to other 
Thread / Flow 
• We already do inter-stage execution reduction
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Opportunity: Distributed Streams

• Encode Reactive Streams as a transport 
protocol 
• Possibility to run over 
• TCP 
• UDP 
• … essentially any bidirectional channel 

• MUX-ing streams 
• Materialize a Flow on a cluster of Akka nodes
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Outro: How do I get my hands on this?

• http://reactive-streams.org/ 
• https://github.com/reactive-streams 
• Early Preview is available: 
"org.reactivestreams" % "reactive-streams-spi" % "0.3" 
"com.typesafe.akka" %% "akka-stream-experimental" % "0.3" 
• check out the Activator template 

"Akka Streams with Scala!" 
(https://github.com/typesafehub/activator-akka-stream-scala)
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http://reactive-streams.org/
https://github.com/reactive-streams
https://github.com/typesafehub/activator-akka-stream-scala
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