
Viktor Klang 
Chief Architect 

@viktorklang

 or: How I Learned to Stop Worrying and Love the Flow

Dr Streamlove



Typesafe

• Founded ~3.5 years ago 
• fusion of Scalable Solutions and Scala 

Solutions 
• Offices in Uppsala, Lausanne and San 

Francisco 
• 60+ employees all over the world 
• Main projects 
• Play, Akka, Scala, Slick

2



My office door

3



View from my office

4



Agenda

• What is a Stream? 
• Live demo 
• What is Reactive? 
• Reactive Streams 
• Akka Streams 
• Live demo 
• What’s next / Opportunities 
• Outro

5



What do we mean by “Stream”?



7

“You cannot step twice into the same stream. 
  For as you are stepping in, 
  other waters are ever flowing on to you.” 

- Heraclitus



What is a Stream?

• Ephemeral flow of data 
• Possibly unbounded in length 
• Focused on describing transformation 
• Can be formed into processing networks

8



What is a Collection?

• Oxford Dictionary: 
• “a group of things or people” 

• wikipedia: 
• “a grouping of some variable number of data items” 

• backbone.js: 
• “collections are simply an ordered set of models”  

• java.util.Collection: 
• definite size, provides an iterator, query membership

9



User Expectations

• an Iterator is expected to visit all elements 
(especially with immutable collections) 
• x.head ++ x.tail == x 
• the contents does not depend on who is 

processing the collection 
• the contents does not depend on when the 

processing happens 
(especially with immutable collections)

10



Unexpected: observed sequence depends on

• when the subscriber subscribed to the stream 
• whether the subscriber can process fast enough 
• whether the streams flows fast enough

11



java.util.stream

• Stream is not derived from Collection 
“Streams differ from Collections in several ways” 
• no storage 
• functional in nature 
• laziness seeking 
• possibly unbounded 
• consumable

12



Streams vs. Collections

• a collection can be streamed 
• a stream processor can create a collection 
• … but saying that a Stream is just a lazy 

Collection evokes the wrong associations

13

Streams are not Collections!



Live Demo



Reactive  Applications

The Four Horsemen of Reactive

15

http://reactivemanifesto.org/

http://reactivemanifesto.org/


The Problem: 
!

Getting Data across an Async Boundary



Possible Solutions

• the Traditional way: blocking calls

17



Possible Solutions

!

• the Push way: buffering and/or dropping

18



Possible Solutions

!

!

• the Reactive way: 
non-blocking & non-dropping & bounded

19



Reactive Streams Initiative



21

“Reactive Streams is an initiative to provide a 
standard for asynchronous stream processing 
with non-blocking back pressure on the JVM.” 

- reactive-streams.org

http://reactive-streams.org


Collaboration between Engineers

• Björn Antonsson – Typesafe Inc. 

• Gavin Bierman – Oracle Inc. 

• Jon Brisbin – Pivotal Software Inc. 

• George Campbell – Netflix, Inc 

• Ben Christensen – Netflix, Inc 

• Mathias Doenitz – spray.io 

• Marius Eriksen – Twitter Inc. 

• Tim Fox – Red Hat Inc. 

• Viktor Klang – Typesafe Inc.

22

• Dr. Roland Kuhn – Typesafe Inc. 

• Doug Lea – SUNY Oswego 

• Stephane Maldini – Pivotal Software Inc. 

• Norman Maurer – Red Hat Inc. 

• Erik Meijer – Applied Duality Inc. 
• Todd Montgomery – Kaazing Corp. 

• Patrik Nordwall – Typesafe Inc. 

• Johannes Rudolph – spray.io 

• Endre Varga – Typesafe Inc.



Motivation

• all participants face the same basic problem 
• all are building tools for their community 
• a common solution benefits everybody 
• interoperability to make best use of efforts 
• e.g. use Reactor data store driver with Akka 

transformation pipeline and Rx monitoring to drive a 
vert.x REST API (purely made up, at this point) 

• propose to include in future JDK

23

See also: Jon Brisbin’s post on “Tribalism as a Force for Good”



Recipe for Success

• minimal interfaces—essentials only 
• rigorous specification of semantics 
• TCK for verification of implementation 
• complete freedom for many idiomatic APIs

24



Reactive Streams

• asynchronous & non-blocking 
• flow of data 
• flow of demand 

• minimal coordination and contention 
• message passing allows for distribution across 
• applications, nodes, CPUs, threads, actors

25



A Data Market using Supply & Demand

• data elements flow downstream 
• demand flows upstream 
• data elements flow only when there is demand 
• data in flight is bounded by signaled demand 
• recipient is in control of maximal incoming data rate

26

Publisher Subscriber

data

demand



Dynamic Push–Pull

• “push”—when consumer is faster 
• “pull”—when producer is faster 
• switches automatically between these 
• batching demand allows batching data

27

Publisher Subscriber

data

demand



Explicit Demand: One-to-many

28

demand

data

Splitting the data means merging the demand



Explicit Demand: Many-to-one

29

Merging the data means splitting the demand



The Meat: Scala

30

trait Publisher[T] { 
  def subscribe(sub: Subscriber[T]): Unit 
} 
trait Subscription { 
  def request(n: Int): Unit 
  def cancel(): Unit 
} 
trait Subscriber[T] { 
  def onSubscribe(s: Subscription): Unit 
  def onNext(e: T): Unit 
  def onError(t: Throwable): Unit 
  def onComplete(): Unit 
}



The dessert: Scala

31

!
!
!
!
!
trait Processor[T, R] extends Subscriber[T] 
                         with Publisher[R]



The Meat: Java

32

public interface Publisher<T> { 
  public void subscribe(Subscriber<T> s); 
} 
public void Subscription { 
  public void request(Int n); 
  public void cancel(); 
} 
public interface Subscriber<T> { 
  public void onSubscribe(Subscription s); 
  public void onNext(T t); 
  public void onError(Throwable t); 
  public void onComplete(); 
}



The dessert: Java

33

!
!
!
!
!
public interface Processor<T, R> 
  extends Subscriber<T>, Publisher<R> { 
}



How does it Connect?

34

SubscriberPublisher

subscribe

onSubscribeSubscription



How does it Flow?

35

SubscriberPublisher

request

onNextElements

request

onNextElements

request



How does it Complete?

36

SubscriberPublisher

request

onNextElements

onComplete



How does it Fail?

37

SubscriberPublisher

request

onNextElements

request

onError
☠



Akka Streams



WAIT! What is             ?



40



41



42



Akka

• Akka's unit of computation is called an Actor  
• Akka Actors are purely reactive components: 
• an address 
• a mailbox 
• a current behavior 
• local storage 

• Scheduled to run when sent a message 
• Each actor has a parent, handling its failures 
• Each actor can have 0..N “child” actors

43



Akka Actors

• An actor processes a message at a time 
• Multiple-producers & Single-consumer 

• The overhead per actor is about ~450bytes 
• Run millions of actors on commodity hardware 

• Akka Cluster currently handles ~2500 nodes 
• 2500 nodes × millions of actors                                                          

=                                                                                                               
“ought to be enough for anybody”

44



Actor model fundamentals

• CREATE(behavior) 
• Creates a new actor 

• BECOME(behavior) 
• Changes the actors behavior for the next message 

• SEND(message) 
• Sends a message asynchronously and non-blocking to an 

actor

45



Actor model augmentations

• SUPERVISE(actor) 
• Lets an actor handle the failure(s) of another actor 

• WATCH(actor) 
• Lets an actor observe the termination of another actor

46



Actor Messages vs Failures

47

Child

Parent

Messages

Replies

Failures / Recovery



Actor Hierarchies

48

system.actorOf(fooProps, “Foo”)

A

B

BarFoo

C

B E

A

D
C

Guardian System Actor

context.actorOf(aProps, “A”)



Actor Paths

49

A

B

BarFoo

C

B E

A

D
C

/Foo

/Foo/A

/Bar/A/B

/Foo/A/D

Guardian System Actor



Canonical papers

• Carl Hewitt; Peter Bishop; Richard Steiger 
(1973). A Universal Modular Actor Formalism 
for Artificial Intelligence. IJCAI. 
• Gul Agha (1986). Actors: A Model of Concurrent 

Computation in Distributed Systems. Doctoral 
Dissertation. MIT Press.

50



Akka Streams

• powered by Akka Actors because 
• execution 
• distribution 
• resilience 

• Typesafe (pun intended) streaming through 
Actors with bounded buffering 
• Flow & Duct DSL is a lifted representation 
• Uses pluggable materialisation

51



Akka HTTP Server Overview

52

TCP  Connection

pa
rs
in
g

re
nd

er
in
g

bypass

user  handler



Akka HTTP Server Part 1

53

val requestProducer = 
 Flow(tcpConn.inputStream) 
  .transform(rootParser) 
  .splitWhen(_.isInstanceOf[MessageStart]) 
  .headAndTail // Flow[(Start, Producer[…])] 
  .tee(bypassConsumer) 
  .collect { 
    case (x: RequestStart, entityParts) => 
      HttpServerPipeline.constructRequest(x,  
        entityParts) } 
  .toProducer(materializer)



Akka HTTP Server Part 2

54

val (bypassConsumer, bypassProducer) = 
 Duct[(RequestOutput, Producer[RequestOutput])] 
  .collect[MessageStart with RequestOutput] 
    { case (x: MessageStart, _) => x } 
  .build(materializer)



Akka HTTP Server Part 3

55

val responseConsumer = 
 Duct[HttpResponse] 
  .merge(bypassProducer) 
  .transform(applyApplicationBypass) 
  .transform(rendererFactory.newRenderer) 
  .flatten(concat) 
  .transform(logErrors) 
  .toProducer(materializer) 
  .produceTo(tcpConn.outputStream)



Akka HTTP server Part 4

56

val logErrors = 
  new Transformer[ByteString, ByteString] { 
    def onNext(element: ByteString) = 
      element :: Nil 
    override def onError(cause: Throwable) = 
      log.error(cause, "Response stream error") 
  } 



Advanced Live Demo



What’s next for Akka Streams?



Opportunity: API

• Current API is minimal 
• Establish core functionality and take it from there 

• Naming: Use established terminology or 
simplified? 
• Both Scala and Java APIs 
• Allows for use by other JVM-hosted languages

59



Opportunity: Self-tuning back pressure

• Each processing stage can know 
• Latency between requesting more and getting more 
• Latency for internal processing 
• Behavior of downstream demand 
• Latency between satisfying and receiving more 
• Trends in requested demand (patterns) 

• Lock-step 
• N-buffered 
• N + X-buffered 
• “chaotic”

60



Opportunity: Operation Fusion

• Compile-time, using Scala Macros 
• filter ++ map == collect 
• map ++ filter == collect? 

• Run-time, using intra-stage simplification 
• Rule: <any> ++ identity == <any> 

Rule: identity ++ <any> == <any> 
• filter ++ dropUntil(cond) ++ map 
• filter ++ identity ++ map == collect

61



Opportunity: Operation Elision

• Compile-time, using Scala Macros 
• fold ++ take(n where n > 0) == fold 
• drop(0) == identity 
• <any> concat identity == <any> 

• Run-time, using intra-stage simplification 
• map ++ dropUntil(cond) ++ take(N) 
• map ++ identity ++ take(N) 
• map ++ take(N)

62



Opportunity: Execution optimizations

• synchronous intra-stage execution N steps 
then trampoline and/or give control to other 
Thread / Flow 
• We already do inter-stage execution reduction

63



Opportunity: Distributed Streams

• Encode Reactive Streams as a transport 
protocol 
• Possibility to run over 
• TCP 
• UDP 
• … essentially any bidirectional channel 

• MUX-ing streams 
• Materialize a Flow on a cluster of Akka nodes

64



Outro: How do I get my hands on this?

• http://reactive-streams.org/ 
• https://github.com/reactive-streams 
• Early Preview is available: 
"org.reactivestreams" % "reactive-streams-spi" % "0.3" 
"com.typesafe.akka" %% "akka-stream-experimental" % "0.3" 
• check out the Activator template 

"Akka Streams with Scala!" 
(https://github.com/typesafehub/activator-akka-stream-scala)

65

http://reactive-streams.org/
https://github.com/reactive-streams
https://github.com/typesafehub/activator-akka-stream-scala


©Typesafe 2014 – All Rights Reserved


