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I’m Erik and I am 
addicted to reading 
language specifications.

I tried them all ....



Hack

C#

Dart

Visual 
Basic

Swift
ECMA
Script



But there is one that is 
even too strong for me.



Java 8 Lambdas/Method References
A method reference expression is compatible in an assignment context, invocation context, or 
casting context with a target type T if T is a functional interface type (§9.8) and the expression 
is congruent with the function type of the ground target type derived from T.

The ground target type is derived from T as follows:

If T is a wildcard-parameterized functional interface type, then the ground target type is the 
non-wildcard parameterization (§9.9) of T.

Otherwise, the ground target type is T.

A method reference expression is congruent with a function type if both of the following are 
true:

The function type identifies a single compile-time declaration corresponding to the reference.

One of the following is true:

The result of the function type is void.

The result of the function type is R, and the result of applying capture conversion (§5.1.10) to 
the return type of the invocation type (§15.12.2.6) of the chosen compile-time declaration is R' 
(where R is the target type that may be used to infer R'), and neither R nor R' is void, and R' is 
compatible with R in an assignment context. https://thestrangeloop.

com/sessions/project-lambda-
in-java-8

You have not read the new PHP 
language specification yet?



Saint Leslie Lamport
Turing Award Winner 2014

http://www.mariowiki.com/File:Crystalcoconut.gif





“category theory 
is the study of 
the general form 
of mathematical 
theories, without 
regard to their 
content”

Sounds just 
like Design 
Patterns!



Category = Programming 
Language

Object = Type

Morphism = Static 
method f(a:A): B or 
property f: B on A

This is the 
problem we are 
going to fix in this 
talk.



Category Theory 
== Interface-based Modelling



Let’s Decode That Greek

Let C be a category with some objects 
X1 and X2.

Let C be a programming language with 
some types A and B. 



And this noise
An object X is a product of X1 and X2, denoted X1×X2, iff it 

satisfies this universal property: there exist morphisms π1 : 

X⇒X1, π2 : X⇒X2 such that for every object Y and pair of 

morphisms f1 : Y⇒X1, f2 : Y⇒X2 there exists a unique 

morphism f1△f2 : Y⇒X such that the following diagram 

commutes:



Commuting Diagram

 X1 × X2  X2 X1

Y

π2 π1 

f1 f2

f1△f2



Translate to Equations

h = f1△f2 
⇔ 
π1◦ h = f1  &&  π2◦h = f2 



Is simply this specification
A type (A,B) is a product of A and B, iff it satisfies this 

universal property: there exist properties _1 : A, _2 : B on 

(A,B) such that for every pair of methods f(c: C): A, g(c: C): 

B there exists a factory method f△g(c: C): (A,B) such that 

the following diagram commutes:



Commuting Diagram

 (A,B)  B A

C

_2 _1

f g
f△g



Translate to Equations

h = f△g 
⇔ 
h(c)._1 = c.f   
h(c)._2 = c.g 

Category Theory is Just 
Interface-Based Design 
With a Little Bit of 
Additional Rigor



Scala Products

trait Product2[+T1, +T2] extends Product {
   abstract def _1: T1
   abstract def _2: T2
}

object Product2 {
   abstract def (f: C⇒A△g: C⇒B)(c: C): Product2[A,B]
}

Wishful 
thinking :->



“There exists” is all we have

Given any two methods
f(c: C): A and g(c:C):B, we can 
define a new method f△g(c: C): 
(A,B) = (f(c), g(c)).



Derived Functions, same deal

Given any two methods
f(a: A):C and g(c:B):D, we can 
define a new method f×g(ab: 
(A,B)): (C,D) = (f(ab._1), g(ab.
_2)).



http://en.wikipedia.
org/wiki/John_McCarthy_
(computer_scientist)
#mediaviewer/File:
John_McCarthy_Stanford.jpg

I could define △ 
and × generically 
in 1960 ...

Ha, ha, ha, I did 
it already in 
1928. 

http://www.learn-math.
info/history/photos/Church.jpeg



https://netbeans.
org/images_www/articles/73/javaee
/ecommerce/intro/duke.png

We don’t 
need no 
stinkin’ 
delegates, 
we already 
have virtual 
methods

Don’t really 
understand 
any of this 
theory shit, 
but we have 
delegates, 
which are 
much better,
of course.

http://upload.wikimedia.
org/wikipedia/commons/9/99/Elvis_Presley_promoting_Jailhous
e_Rock.jpg



Objects Represent Real 
World Objects

Categories Represent 
Mathematical Objects



Define not just interface, 
but  also algebraic 
properties required of 
implementation

And don’t bullshit 
around with 
grandiloquent terms 



http://www.computer.org/portal/image/image_gallery?
uuid=b15467b5-5dfe-44d3-8663-
9e6cf406e8e4&groupId=141571&t=1270643684821

Reality: A Cousin 
twice Removed



I thought this talk was 
about Cartesian Closed 
Categories. Cut the 
crap please!



Young man, before you 
dive into the deep end, 
let me note that in 
Smalltalk we had 
blocks since 1970.

http://en.wikipedia.org/wiki/Facepalm



Exponentials



Lets decode the Greek

Let C be a category with binary products and let 
Y and Z be objects of C. The exponential object 
ZY can be defined as a universal morphism 
from the functor –×Y to Z. (The functor –×Y from 
C to C maps objects X to X×Y and morphisms φ 
to φ×id).



Lets decode the Greek

Let L be a language that supports tuples and let 
A and B be types of L. The function type A⇒B 
can be defined as a factory method from the 
functor –×A to B. (The functor –×A in L maps 
types C to C×A and methods m to m×id).



What Is A Functor?



Lets decode the Greek

Let C be a category. A functor F is a mapping that 
associates to each object X an object F(X), and 
associates to each morphism f:X⇒Y a morphism 
F(f):F(X)⇒F(Y) such that the following two 
conditions hold: F(id) = id and F(g◦f) = F(g)◦F(f) 
for all morphisms f:X⇒Y, and g:Y⇒Z. That is, 
functors must preserve identity morphisms and 
composition of morphisms.



Lets decode the Greek
Let L be a language. A functor C[_] is a generic 
type that associates to each type A an instantiated 
type C[A], and has a method map(f: A⇒B):C[B] 
such that for all cs: C[A] the following two 
conditions hold: cs.map(id) = cs and cs.map(a⇒f(g
(a)) = cs.map(g).map(f) for all functions f:B⇒C, 
and g:A⇒B. That is, functors must preserve 
identity and composition of functions.



http://andrej.com/mathematicians/large/Lambek_Joachim.jpg

You have messed up a 
bit by silently introducing 
functions already, which 
is the type we were 
trying to define  ….

No worries, I am a dirty 
hacker. Purity is sooooo 
overrated. A function is a type 
that reifies methods.

That’s what 
exponentials 
are for.

Doh!



Continue to Decode the Greek

Explicitly, the definition is as follows. An 
object ZY, together with a morphism eval: 
(ZY×Y)⇒Z is an exponential object if for 
any object X and morphism g: (X×Y)⇒Z 
there is a unique morphism λg: X⇒ZY 

such that the following diagram 
commutes:



Commuting Diagram

 ZY×Y  Z ZY

X×Y

eval

gλg×id

X

λg



Translate to Equations

g(a,b) 
= 
(eval◦λg×id)(a,b)
=
eval (λg(a), b)

To be precise Erik, 
λg is the unique 
morphism that 
makes this 
equation hold 



http://www.haskell.
org/wikiupload/8/86/HaskellBCurry.
jpg

You may also 
recognize λg as 
“currying” in Haskell, i.
e.

curry g a b = g(a,b)
uncurry f(a,b) = f a b

Which I invented in 
1958.



Products and Objects

http://www.cse.unt.edu/site/node/517

As I explained in 1979, an 
instance method is just a 
static method that takes 
the this pointer as an 
additional argument

Hence an instance method m
(b:B): C on type A is simply a 
morphism from (A×B)⇒C.

And did I already  
mention that C++11 
has lambdas?



This is argument 0 to a method call
The Java Virtual Machine uses local variables to pass 
parameters on method invocation. On class method 
invocation, any parameters are passed in consecutive local 
variables starting from local variable 0. On instance method 
invocation, local variable 0 is always used to pass a 
reference to the object on which the instance method is 
being invoked (this in the Java programming language). 
Any parameters are subsequently passed in consecutive 
local variables starting from local variable 1.



Continue to Decode the Greek

Explicitly, the definition is as follows. A 
type B⇒C, together with a method apply
(b: B): C is a function type if for any type 
A and method m(b: B):C on A there is a 
factory method (a: A)::m :B⇒C such that 
(C)a::m.apply(b)=(C)a.m(b).



Translate to Equations

a::m.apply(b)
= 
a.m(b)

Dude, that 
is what I 
said all the 
time! 





Hom-set?

Hom(A,B) = 
{ m 
| m ∈ C 
& m: A⇒B}

Just a fancy way to 
say “all methods m
(a: A): B”



The Magic Of Method References

Hom(A×B,C) ≅ Hom(A,B⇒C)
Instance 
methods m(b:
B):C on an 
instance a: A

Are isomorphic to 
lambda expressions 
b->a::m(b) of type 
Function<B,C>



Unfinished Functor Business



In our case

Hom(A×B,C) ≅ Hom(A,B⇒C)

Hom(F[B,A],C) ≅ Hom(A,G[B,C])



Show Me Some Code
object F {
  def apply[A,B](a: A, b: B): F[B,A] = new F(a,b)
}

class F[B,A](_1 : A, _2 : B) extends Pair[A,B](_1, _2) {
  def map[C](f: A=>C): F[B,C] = F(f(_1),_2)
}



object G {
  def apply[B,C](f: B=>C): G[B,C] = new G[B,C] {
    override def apply(b: B): C = f(b)
  }
}

trait G[B,C] extends (B=>C) {
  def map[C](f: C=>A): G[B,A] = G(b => f(apply(b)))
}

Show Me Some Code



Homework

Show that F[B,_] and G[B,_] are indeed 
functors.

Show that F[B,_] and G[B,_] are adjoint 
functors by defining implicit conversions each 
direction.



Monads And Adjunctions



The monad 
that arises from 
F[B,_] and G
[B,_] is the 
State Monad

But that is a 
topic for 
another talk

http://www.cs.kent.ac.uk/people/staff/rej/face.gif



Your Next Tattoo

eval(λm(a), b) 

a::m.apply(b) 
http://en.wikipedia.org/wiki/Jolly_Roger



Method References 

Are Exponentials



What keeps puzzling me 
is why did it take so 
damn long before OO 
programmers made 
methods into first class 
objects. 

http://blogs.vmware.com/tp/.
a/6a00d8341c328153ef0120a4e05
530970b-pi

Because I distracted 
them with Spring, 
and got stinking rich 
doing it ;-)


