Lambdas And Cartesian
Closed Categories

A Tribute To Joachim Lambek
5 December 1922 — 23 June 2014

I’'m Erik and | am
addicted to reading
language specifications.

| tried them all

C# Visual

ECMA Basic

Hack Script Swift
Dart

But there is one that is
even too strong for me.

Java 8 Lambdas/Method References

A method reference expression is compatible in an assignment context, invocation context, or
casting context with a target type T if T is a functional interface type (§9.8) and the ¢~
is congruent with the function type of the ground target type derived from T.

The ground target type is derived from T as follows: You have not r_G_ad t_he new PHP
language specification yet?

If T is a wildcard-parameterized functional interface type, then the ground target tyy
non-wildcard parameterization (§9.9) of T. _

Otherwise, the ground target type is T.

A method reference expression is congruent with a function type if both of the following are
true:

The function type identifies a single compile-time declaration corresponding to the reference.
One of the following is true:
The result of the function type is void.

The result of the function type is R, and the result of applying capture conversion (§5.1.10) to
the return type of the invocation type (§15.12.2.6) of the chosen compile-time declaration is R’
(where R is the target type that may be used to infer R'), and neither R nor R' is void, and R' is
compatible with R in an assignment context.

https://thestrangeloop.
com/sessions/project-lambda-
in-java-8

Saint Leslie Lamport
Turing Award Winner 2014

J.

http://www.mariowiki.com/File:Crystalcoconut.gif

Abstract nonsense

From Wikipedia, the free encyclopedia

In mathematics, abstract nonsense, general abstract nonsense, and general
nonsense are terms used facetiously by some mathematicians to describe certain
kinds of arguments and methods related to category theory. (Very) roughly
speaking, category theory is the study of the general form of mathematical theories,
without regard to their content. As a result, a proof that relies on category theoretic
ideas often seems slightly out of context to those who are not used to such
abstraction, sometimes to the extent that it resembles a comical non sequitur. Such
proofs are sometimes dubbed “abstract nonsense” as a light-hearted way of alerting
people to their abstract nature.

Sounds just
like Design
Patterns!

“category theory
is the study of

the general form
of mathematical
theories, without
regard to their

content”

1la lp
Category = Programming C\V f Q
Language A

his is the
problem we are

going to fix in this
alk.

Object = Type

Morphism = Static

. . This is a category with a collection of &
meth Od f(a° A) ‘ B or objects A, B, C and collection of
. morphisms denoted f, g, g - f, and the
property f ' B on A loops are the identity arrows. This

category is typically denoted by a
boldface 3.

Category Theory
== Interface-based Modelling

Definition [ediy
Let C be a category with some objects X, and X,. An object X is a product of X, and X,, denoted X; x X, iff it satisfies this universal property:

there exist morphisms 717 : X' — X, my : X — X such that for every object Y and pair of morphisms f1 : Y — X, fo : Y — X, there exists a unique
morphism f : Y — X such that the following diagram commutes:

X <—mX‘ X Xog — X»
The unique morphism _f is called the product of morphisms fl and f2 and is denoted (f;, fz) The morphisms 71 and T2 are called the canonical projections or projection
morphisms.
Above we defined the binary product. Instead of two objects we can take an arbitrary family of objects indexed by some set J. Then we obtain the definition of a product.

An object X is the product of a family {_\'},- of objects iff there exist morphisms 7; : X — X, such that for every object Y and a [-indexed family of morphisms
fi 'Y — X there exists a unigue morphism f : Y — X such that the following diagrams commute for all ; € [:

The product is denoted H ‘\-l; if [= {1

i€l

n}, then denoted X; x - -- x X, and the product of morphisms is denoted { f1, .. ., f,,)-

Let’s Decode That Greek

Let € be a category with some OBjects
X, and X,,.

Let € be a programming language with
some [JJPE8 A and B.

And this noise

An object X is a product of X, and X, denoted X xX,, iff it
satisfies this universal property: there exist morphisms m, :
X=X, T, : X=X, such that for every object Y and pair of
morphisms f, : Y=X,, f, : Y=X, there exists a unique
morphism f,Af, : Y=X such that the following diagram

commutes:

Commuting Diagram

Translate to Equations
h=f,Af,

&

Mo h=f && m,oh="f,

Is simply this specification

A type (A,B) is a product of A and B, iff it satisfies this

universal property: there exist properties _1: A, _2 : Bon
(A,B) such that for every pair of methods f(c: C): A, g(c: C):
B there exists a factory method f A g(c: C): (A,B) such that

the following diagram commutes:

Commuting Diagram

Translate to Equations

Category Theory is Just
Interface-Based Design
With a Little Bit of

Additional Rigor

Scala Products

trait Product2[+T1, +T2] extends Product {
abstract def _1: T1
abstract def _2: T2

}

object Product? {
abstract def (f: C=A/Ag: C=B)(c: C): Product2[A,B]

}

“There exists” is all we have

Given any two methods
f(c: C): A and g(c:C):B, we can
define a new method f.g(c: C):

(A.B) = (f(c), g(c)).

Derived Functions, same deal

Given any two methods

f(a: A):C and g(c:B):D, we can
define a new method fxg(ab:
(A,B)): (C,D) = (f(ab._1), g(ab.
_2)).

| could define A
and x generically
in 1960 ...

Ha, ha, ha, | did
it already in
1928.

http://en.wikipedia.
org/wiki/John_McCarthy
(computer_scientist)
#mediaviewer/File:

: http://www.learn-math.
John_McCarthy_Stanford.jpg info/history/photos/Church.jpeg

Don’t really
understand

We don’t

/e«

of course.

https://netbeans. http://upload.wikimedia.

need no any of this

stinkin’ theory shit,

delegates, but we have .
we already delegates, :
have virtual which are

methods much better,

___LJ

org/images_www/articles/73/javaee org/wikipedia/commons/9/99/Elvis_Presley promoting Jailhous

/ecommerce/intro/duke.png e_Rock.jpg

Objects Represent Real
World Objects

Categories |Represent
Mathematical Objects

Define not just interface,
but also algebraic

properties required of
implementation

And don’t bullshit
around with
grandiloguent terms

Reality: A Cousin
twice Removed

http://www.computer.org/portal/image/image_gallery?
uuid=b15467b5-5dfe-44d3-8663-

N\ LAN O A0 et ol d AN AT AOOLADYTITANP ADPINPOD AONA

| thought this talk was
about Cartesian Closed
Categories. Cut the
crap please!

Young man, before you
dive into the deep end,
let me note that in
Smalltalk we had

blocks since 1970.

http://en.wikipedia.org/wiki/Facepalm

Exponentials

Definition (ediy
Let C be a category with binary products and let Y and Z be objects of C. The exponential object Z¥ can be defined as a universal morphism from the functor —x Y to Z. (The functor —x Y from Cto
C maps objects X to Xx Y and morphisms ¢ to ¢xidy).
Explicitly, the definition is as follows. An object ZY, together with a morphism
eval: (Z¥ xY) = Z
is an exponential object if for any object X and morphism g: (XxY) = Zthere is a unique morphism
\g: X = Z¥

such that the following diagram commutes:

VA Z¥ xY -7

eval
If the exponential object Z¥ exists for all objects Zin C, then the functor that sends Zto ZY is a right adjoint to the functor —x Y. In this case we have a natural bijection between the hom-sets
Hom(X x Y, Z) 2 Hom(X, Z¥).
(Note: In functional programming languages, the morphism eval is often called apply, and the syntax \g is often written cumy(g). The morphism eval here must not to be confused with the eval
function in some programming languages, which evaluates quoted expressions.)

The morphisms § and /\g are sometimes said to be exponential adjoints of one another.!"!

Lets decode the Greek

Let C be a category with binary products and let
Y and Z be objects of C. The exponential object
Z” can be defined as a universal morphism

from the [BIGIOE <Y to Z. (The functor -xY from
C to € maps objects X to XxY and morphisms ¢

to pxid).

Lets decode the Greek

Let L be a language that supports tuples and let
A and B be types of L. The function type A=B
can be defined as a factory method from the
JBRBIBE -< A to B. (The functor -xA in L maps
types C to CxA and methods m to mxid).

What Is A Functor?

Definition (ediy
Let Cand D be categories. A functor F from Cto Dis a mapping that/®!
« associates to each object X ¢ (' anobject F(X) € D,
« associates to each morphism f : X' — Y € C'amorphism F'(f) : F(X) — F(Y') € D such that the following two conditions hold:
« F(idx) = id p(x) for every object X € C'
. F(_qo f)= F(g) o F(f)forall morphisms f : X — Yandg:Y — Z.

That is, functors must preserve identity morphisms and composition of morphisms.

Covariance and contravariance [edit]
There are many constructions in mathematics that would be functors but for the fact that they "turn morphisms around" and "reverse composition". We then define a contravariant functor F from Cto D as a mapping that
« associates to each object X' ¢ (' anobject F(X') € D,
« associates to each morphism f : X — Y € C' a morphism F(f) : F(Y) — F(X) € Dsuch that
. F(id_\~) = idF(_\') for every object X ¢ (',
« F(go f)=F(f) o F(g)forallmorphisms f : X —+Yandg:Y — Z.
Note that contravariant functors reverse the direction of composition.

Ordinary functors are also called covariant functors in order to distinguish them from contravariant ones. Note that one can also define a contravariant functor as a covanant functor on the opposite category ()‘)P.[“' Some authors prefer to write all expressions
covariantly. That is, instead of saying | : (' — [)is a contravariant functor, they simply write | : ("°P 3 [) (or sometimes ' : (' — [)°P) and call it a functor.

Contravariant functors are also occasionally called cofunctors.

Lets decode the Greek

Let C be a category. A functor F is a mapping that
associates to each object X an object F(X), and
associates to each morphism f:X=Y a morphism
F(f):F(X)=F(Y) such that the following two
conditions hold: F(id) = id and F(g-f) = F(g)- F(f)
for all morphisms f:X=Y, and g:Y=Z. That is,
functors must preserve identity morphisms and
composition of morphisms.

Lets decode the Greek

Let L be a language. A functor C[_] is a generic
type that associates to each type A an instantiated
type C[A], and has a method map(f: A=B):C[B]
such that for all ¢s: C[A] the following two
conditions hold: cs.map(id) = ¢cs and cs.map(a=f(g
(a)) = cs.map(g).map(f) for all functions f:B=C,
and g:A=B. That is, functors must preserve
identity and composition of functions.

No worries, | am a dirty
hacker. Purity is sooooo
overrated. A function is a type
that reifies methods.

You have messed up a
bit by silently introducing
functions already, which
is the type we were

trying to define

That’s what
exponentials
are for.

http://andrej.com/mathematicians/large/Lambek_Joachim.jpg

Continue to Decode the Greek

Explicitly, the definition is as follows. An
object Z7, together with a morphism eval:
(Z'xY)=Z is an exponential object if for
any object X and morphism g: (XxY)=Z
there is a unique morphism Ag: X=Z"
such that the following diagram
commultes:

Commuting Diagram

Translate to Equations

To be precise Erik,
Ag is the unique

morphism that
9 (C(, b) makes this

equation hold

Eeval - Agxid)(a,b)

eval (Ag(a), b)

ou may also
recognize Ag as
“currying” in Haskell, i.
e.

curry gab = g(a,b)
uncurry f(ab)=fab

Which | invented in
1958.

http://www.haskell.
org/wikiupload/8/86/HaskellBCurry.

Products and Objects

As | explained in 1979, an
instance method is just a
static method that takes
the this pointer as an

Hence an instance method m
(b:B): C on type A is simply a
morphism from (AxB)—=C.

And did | already
mention that C++11
has lambdas?

http://www.cse.unt.edu/site/node/517

This is argument 0 to a method call

The Java Virtual Machine uses local variables to pass
parameters on method invocation. On class method
Invocation, any parameters are passed in consecutive local
variables starting from local variable 0. On instance method
Invocation, local variable 0 is always used to pass a
reference to the object on which the instance method is
being invoked (this in the Java programming language).
Any parameters are subsequently passed in consecutive
local variables starting from local variable 1.

Continue to Decode the Greek

Explicitly, the definition is as follows. A
type B=C, together with a method apply
(b: B): C is a function type if for any type
A and method m(b: B):C on A there is a
factory method (a: A)::m :B=C such that
(C)a::m.apply(b)=(C)a.m(b).

Translate to Equations

a::m.apply(b) awhat |

said all the

time!

;.m(b)

If the exponential object ZY exists for all objects Zin C,
then the functor that sends Zto ZY is a right adjoint to
the functor —xY. In this case we have a natural bijection
between the hom-sets

Hom(X x Y, Z) = Hom(X, Z").

Hom-set?

Hom(A,B) =
{m
lmeC

& m: A=B}

Just a fancy way to
say “all methods m
(a: A): B”

The Magic Of Method References
Hom(AxB,C) = Hom(A ,B=C)

Instance
methods m(b:
B):C on an

instance a: A

Are isomorphic to
lambda expressions
b->a::m(b) of type
Function<B,C>

Unfinished Functor Business

In the most concise symmetric definition, an adjunction between categories Cand D is

a pair of functors,
F:D—-Cad G:C—D
and a family of bijections
home(FY, X) = homp(Y, GX)
which is natural in the variables X and Y. The functor Fis called a left adjoint functor,

while G is called a right adjoint functor. The relationship “F is left adjoint to G” (or
equivalently, “G is right adjoint to F”’) is sometimes written

F4G.

In our case

Hom(Axg,C) = Hom(A s=C)

Hom(F[z,A],C) = Hom(A,G[:,C])

Show Me Some Code

object F {
def apply[Ae](a: A, b: 8): F[,A] = new F(a,b)
}

class F[g,A](_1: A, _2:8) extends Pair[Ae](_1, _2){
def map[C](f: A=>C): F[e,C] = F(f(_1),_2)
}

Show Me Some Code

object G {
def apply[s,C](f: 8=>C): G[&,C] = new 6[&,C] {
override def apply(b: &): C = f(b)
}
}

trait 6[s,C] extends (e=>C) {
def map[C](f: C=>A): G[&,A] = G(b => f(apply(b)))
}

Homework

Show that F[B,_]and G[B,_] are indeed
functors.

Show that F[B,_] and G[B,_] are adjoint
functors by defining implicit conversions each

direction.

Monads And Adjunctions

Monads [edit]

Every adjunction <F, G, €, n> gives rise to an associated monad <T, n, u> inthe category D. The functor
T -D—-7D

is given by T = GF. The unit of the monad
n:lp =T

is just the unit n of the adjunction and the multiplication transformation
pw:T* =T

is given by u = GeF. Dually, the triple <FG, €, FnG> defines a comonad in C.

Every monad arises from some adjunction—in fact, typically from many adjunctions—in the above fashion. Two constructions,
called the category of Eilenberg—Moore algebras and the Kleisli category are two extremal solutions to the problem of
constructing an adjunction that gives rise to a given monad.

The monad
that arises from
F[B._]and G
[B,_]is the
State Monad

But that is a
topic for
another talk

http://www.cs.kent.ac.uk/people/staff/rej/face.gif

Your Next Tattoo

eval(Am(a), b)

a::m.apply(b)

http://en.wikipedia.org/wiki/Jolly _Roger

Method References

e

Are Exponentials

What keeps puzzling me
is why did it take so
damn long before OO
programmers made
methods into first class
objects.

Because | distracted %
them with Spring, expert one-on-one
and got stinking rich J2EE Design and
doing it ;-) Development

http://blogs.vmware.com/tp/.
a/6a00d8341c328153ef0120a4e05
530970b-pi

