
Lambdas And Cartesian
Closed Categories
A Tribute To Joachim Lambek

5 December 1922 – 23 June 2014

I’m Erik and I am
addicted to reading
language specifications.

I tried them all

Hack

C#

Dart

Visual
Basic

Swift
ECMA
Script

But there is one that is
even too strong for me.

Java 8 Lambdas/Method References
A method reference expression is compatible in an assignment context, invocation context, or
casting context with a target type T if T is a functional interface type (§9.8) and the expression
is congruent with the function type of the ground target type derived from T.

The ground target type is derived from T as follows:

If T is a wildcard-parameterized functional interface type, then the ground target type is the
non-wildcard parameterization (§9.9) of T.

Otherwise, the ground target type is T.

A method reference expression is congruent with a function type if both of the following are
true:

The function type identifies a single compile-time declaration corresponding to the reference.

One of the following is true:

The result of the function type is void.

The result of the function type is R, and the result of applying capture conversion (§5.1.10) to
the return type of the invocation type (§15.12.2.6) of the chosen compile-time declaration is R'
(where R is the target type that may be used to infer R'), and neither R nor R' is void, and R' is
compatible with R in an assignment context. https://thestrangeloop.

com/sessions/project-lambda-
in-java-8

You have not read the new PHP
language specification yet?

Saint Leslie Lamport
Turing Award Winner 2014

http://www.mariowiki.com/File:Crystalcoconut.gif

“category theory
is the study of
the general form
of mathematical
theories, without
regard to their
content”

Sounds just
like Design
Patterns!

Category = Programming
Language

Object = Type

Morphism = Static
method f(a:A): B or
property f: B on A

This is the
problem we are
going to fix in this
talk.

Category Theory
== Interface-based Modelling

Let’s Decode That Greek

Let C be a category with some objects
X1 and X2.

Let C be a programming language with
some types A and B.

And this noise
An object X is a product of X1 and X2, denoted X1×X2, iff it

satisfies this universal property: there exist morphisms π1 :

X⇒X1, π2 : X⇒X2 such that for every object Y and pair of

morphisms f1 : Y⇒X1, f2 : Y⇒X2 there exists a unique

morphism f1△f2 : Y⇒X such that the following diagram

commutes:

Commuting Diagram

 X1 × X2 X2 X1

Y

π2 π1

f1 f2

f1△f2

Translate to Equations

h = f1△f2
⇔
π1◦ h = f1 && π2◦h = f2

Is simply this specification
A type (A,B) is a product of A and B, iff it satisfies this

universal property: there exist properties _1 : A, _2 : B on

(A,B) such that for every pair of methods f(c: C): A, g(c: C):

B there exists a factory method f△g(c: C): (A,B) such that

the following diagram commutes:

Commuting Diagram

 (A,B) B A

C

_2 _1

f g
f△g

Translate to Equations

h = f△g
⇔
h(c)._1 = c.f
h(c)._2 = c.g

Category Theory is Just
Interface-Based Design
With a Little Bit of
Additional Rigor

Scala Products

trait Product2[+T1, +T2] extends Product {
 abstract def _1: T1
 abstract def _2: T2
}

object Product2 {
 abstract def (f: C⇒A△g: C⇒B)(c: C): Product2[A,B]
}

Wishful
thinking :->

“There exists” is all we have

Given any two methods
f(c: C): A and g(c:C):B, we can
define a new method f△g(c: C):
(A,B) = (f(c), g(c)).

Derived Functions, same deal

Given any two methods
f(a: A):C and g(c:B):D, we can
define a new method f×g(ab:
(A,B)): (C,D) = (f(ab._1), g(ab.
_2)).

http://en.wikipedia.
org/wiki/John_McCarthy_
(computer_scientist)
#mediaviewer/File:
John_McCarthy_Stanford.jpg

I could define △
and × generically
in 1960 ...

Ha, ha, ha, I did
it already in
1928.

http://www.learn-math.
info/history/photos/Church.jpeg

https://netbeans.
org/images_www/articles/73/javaee
/ecommerce/intro/duke.png

We don’t
need no
stinkin’
delegates,
we already
have virtual
methods

Don’t really
understand
any of this
theory shit,
but we have
delegates,
which are
much better,
of course.

http://upload.wikimedia.
org/wikipedia/commons/9/99/Elvis_Presley_promoting_Jailhous
e_Rock.jpg

Objects Represent Real
World Objects

Categories Represent
Mathematical Objects

Define not just interface,
but also algebraic
properties required of
implementation

And don’t bullshit
around with
grandiloquent terms

http://www.computer.org/portal/image/image_gallery?
uuid=b15467b5-5dfe-44d3-8663-
9e6cf406e8e4&groupId=141571&t=1270643684821

Reality: A Cousin
twice Removed

I thought this talk was
about Cartesian Closed
Categories. Cut the
crap please!

Young man, before you
dive into the deep end,
let me note that in
Smalltalk we had
blocks since 1970.

http://en.wikipedia.org/wiki/Facepalm

Exponentials

Lets decode the Greek

Let C be a category with binary products and let
Y and Z be objects of C. The exponential object
ZY can be defined as a universal morphism
from the functor –×Y to Z. (The functor –×Y from
C to C maps objects X to X×Y and morphisms φ
to φ×id).

Lets decode the Greek

Let L be a language that supports tuples and let
A and B be types of L. The function type A⇒B
can be defined as a factory method from the
functor –×A to B. (The functor –×A in L maps
types C to C×A and methods m to m×id).

What Is A Functor?

Lets decode the Greek

Let C be a category. A functor F is a mapping that
associates to each object X an object F(X), and
associates to each morphism f:X⇒Y a morphism
F(f):F(X)⇒F(Y) such that the following two
conditions hold: F(id) = id and F(g◦f) = F(g)◦F(f)
for all morphisms f:X⇒Y, and g:Y⇒Z. That is,
functors must preserve identity morphisms and
composition of morphisms.

Lets decode the Greek
Let L be a language. A functor C[_] is a generic
type that associates to each type A an instantiated
type C[A], and has a method map(f: A⇒B):C[B]
such that for all cs: C[A] the following two
conditions hold: cs.map(id) = cs and cs.map(a⇒f(g
(a)) = cs.map(g).map(f) for all functions f:B⇒C,
and g:A⇒B. That is, functors must preserve
identity and composition of functions.

http://andrej.com/mathematicians/large/Lambek_Joachim.jpg

You have messed up a
bit by silently introducing
functions already, which
is the type we were
trying to define ….

No worries, I am a dirty
hacker. Purity is sooooo
overrated. A function is a type
that reifies methods.

That’s what
exponentials
are for.

Doh!

Continue to Decode the Greek

Explicitly, the definition is as follows. An
object ZY, together with a morphism eval:
(ZY×Y)⇒Z is an exponential object if for
any object X and morphism g: (X×Y)⇒Z
there is a unique morphism λg: X⇒ZY

such that the following diagram
commutes:

Commuting Diagram

 ZY×Y Z ZY

X×Y

eval

gλg×id

X

λg

Translate to Equations

g(a,b)
=
(eval◦λg×id)(a,b)
=
eval (λg(a), b)

To be precise Erik,
λg is the unique
morphism that
makes this
equation hold

http://www.haskell.
org/wikiupload/8/86/HaskellBCurry.
jpg

You may also
recognize λg as
“currying” in Haskell, i.
e.

curry g a b = g(a,b)
uncurry f(a,b) = f a b

Which I invented in
1958.

Products and Objects

http://www.cse.unt.edu/site/node/517

As I explained in 1979, an
instance method is just a
static method that takes
the this pointer as an
additional argument

Hence an instance method m
(b:B): C on type A is simply a
morphism from (A×B)⇒C.

And did I already
mention that C++11
has lambdas?

This is argument 0 to a method call
The Java Virtual Machine uses local variables to pass
parameters on method invocation. On class method
invocation, any parameters are passed in consecutive local
variables starting from local variable 0. On instance method
invocation, local variable 0 is always used to pass a
reference to the object on which the instance method is
being invoked (this in the Java programming language).
Any parameters are subsequently passed in consecutive
local variables starting from local variable 1.

Continue to Decode the Greek

Explicitly, the definition is as follows. A
type B⇒C, together with a method apply
(b: B): C is a function type if for any type
A and method m(b: B):C on A there is a
factory method (a: A)::m :B⇒C such that
(C)a::m.apply(b)=(C)a.m(b).

Translate to Equations

a::m.apply(b)
=
a.m(b)

Dude, that
is what I
said all the
time!

Hom-set?

Hom(A,B) =
{ m
| m ∈ C
& m: A⇒B}

Just a fancy way to
say “all methods m
(a: A): B”

The Magic Of Method References

Hom(A×B,C) ≅ Hom(A,B⇒C)
Instance
methods m(b:
B):C on an
instance a: A

Are isomorphic to
lambda expressions
b->a::m(b) of type
Function<B,C>

Unfinished Functor Business

In our case

Hom(A×B,C) ≅ Hom(A,B⇒C)

Hom(F[B,A],C) ≅ Hom(A,G[B,C])

Show Me Some Code
object F {
 def apply[A,B](a: A, b: B): F[B,A] = new F(a,b)
}

class F[B,A](_1 : A, _2 : B) extends Pair[A,B](_1, _2) {
 def map[C](f: A=>C): F[B,C] = F(f(_1),_2)
}

object G {
 def apply[B,C](f: B=>C): G[B,C] = new G[B,C] {
 override def apply(b: B): C = f(b)
 }
}

trait G[B,C] extends (B=>C) {
 def map[C](f: C=>A): G[B,A] = G(b => f(apply(b)))
}

Show Me Some Code

Homework

Show that F[B,_] and G[B,_] are indeed
functors.

Show that F[B,_] and G[B,_] are adjoint
functors by defining implicit conversions each
direction.

Monads And Adjunctions

The monad
that arises from
F[B,_] and G
[B,_] is the
State Monad

But that is a
topic for
another talk

http://www.cs.kent.ac.uk/people/staff/rej/face.gif

Your Next Tattoo

eval(λm(a), b)

a::m.apply(b)
http://en.wikipedia.org/wiki/Jolly_Roger

Method References

Are Exponentials

What keeps puzzling me
is why did it take so
damn long before OO
programmers made
methods into first class
objects.

http://blogs.vmware.com/tp/.
a/6a00d8341c328153ef0120a4e05
530970b-pi

Because I distracted
them with Spring,
and got stinking rich
doing it ;-)

