ORACLE

Implementing Ruby
Using Truffle and Graal

Chris Seaton @ChrisGSeaton

ECOOP Summer Schools
2014

ORACLE

Safe Harbor Statement

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. Oracle reserves the right to alter its development plans and practices
at any time, and the development, release, and timing of any features or
functionality described in connection with any Oracle product or service remains
at the sole discretion of Oracle. Any views expressed in this presentation are my
own and do not necessarily reflect the views of Oracle.

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 3

We’re going to talk about

ORACLE

E®» Motivation
E» Truffle and Graal Theory

B Truffle and Graal in Practice

E» Applying it to Ruby

Motivation

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

JavaScript: One language to rule them all | VentureBeat
venturebeat.com/2011/.. /javascript-one-language-to-rule-them-_.. ~

S by Peter Yared - in 23 Google+ circles
Jul 29, 2011 - Why code in two different scripting languages, one on the client

and one on the server? It's time for one language to rule them all. Peter
Yared ...

[PDF] Python: One Script (Language) to rule them all - lan Darwin

www.darwinsys.com/python/python4unix.pdf ~
Another Language? » Python was invented in 1991 by Guido van. Rossum. = Named

after the comedy troupe, not the snake. » Simple. = They all say that!

Q & Stuff: One Language to Rule Them All - Java
gstuff. blogspot.com/2005/10/one-language-to-rule-them-all-java.himl ~

Oct 10, 2005 - One Language to Rule Them All - Java. For a long time I'd been
hoping to add a scripting language to LibQ, to use in any of my (or other ...

Dart : one language to rule them all - MixIT 2013 - Slideshare
frslideshare.net/sdeleuze/dart-mixit2013en ~
DartSébastien Deleuze - @sdeleuzeMix-IT 20130ne language to rule them all ...

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

3\

|=| stackoverflow

Stack Overflow is a question and answer site for professional and enthusiast programmers. It's 100% free, no
registration required.

Why can’t there be an “ultimate” programming language?

closed as not constructive by Tim, Bo Persson, Devon_C_Miller, Mark,
Graviton Jan 17 at 5:58

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Computer Language Benchmarks Game

1000 -

100 -

10 -

ORACLE

Computer Language Benchmarks Game

1000 - @

mean

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 9

Current situation How it should be

I I

Prototype a new language Prototype a new language in Java
Parser and language work to build Parser and language work to build
syntax tree (AST), AST Interpreter syntax tree (AST)

Execute using AST interpreter
Write a “real” VM & P

In C/C++, still using AST interpreter, People start using it
spend a lot of time implementing . And it is already fast

runtime system, GC, ...

People start using it

People complain about performance

Define a bytecode format and
write bytecode interpreter

Performance is still bad

Write a JIT compiler
Improve the garbage collector

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 10

Truffle and Graal Theory

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

11

Guest Language

Bytecode

JVM

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

12

ORACLE

Guest Language

A
Java IR, machine code cache,
invalidation and deoptimisation,
optimisation phases, replacements,
etc... etc...
\ 4
Graal VM

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 13

Guest Language

\l/ AST interpreter

Truffle

i

Graal VM

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

14

Node Rewriting Compilation using
for Profiling Feedback Partial Evaluation

| > —

('Node Transitions) 0 e

Uninitialized Integer

AST Interpreter
Uninitialized Nodes

AST Interpreter

Rewritten Nodes Compiled Code

Generic

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rule them all. In Proceedings of Onward!, 2013.

ORACLE

Frequently
executed call

ORACLE

Deoptimization Node Rewriting to Update Recompilation using
to AST Interpreter Profiling Feedback Partial Evaluation

T. Wirthinger, C. Wimmer, A. WoR, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,

ORACLE

and M. Wolczko. One VM to rule them all. In Proceedings of Onward!, 2013.

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 18

Guest Language Application

Pl

Guest Language Implementation Language Parser AST Interpreter

Truffle API Framework for Node Rewriting

Truffle Optimizer Partial Evaluation using Graal

VM Runtime Services Garbage Collector Graal Compiler \
Stack Walking Deoptimization

AOT Optimization: using Graal for static analysis and AOT compilation

Hosted on any Java VM

(slow, for guest language
development and debugging only)

Hosted on Graal VM

0S

(fast, for integration of guest language
code with existing Java applications)

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon,
and M. Wolczko. One VM to rule them all. In Proceedings of Onward!, 2013.

ORACLE

Static Analysis Ahead-of-Time

Compilation

JDK
T hine Code
Substrate VM
0S
All Java classes from Reachable methods, Application running
application, JDK, fields, and classes without compilation
and Substrate VM or class loading

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

20

One VM

Good interpreted performance on a standard JVM

Extremely good dynamically compiled performance on Graal

High level representation of languages

Substrate VM for startup performance, low footprint and easy
distribution

 JavaScript, Ruby, R, J, C, Python, SmallTalk

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 21

Truffle and Graal in Practice

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Simple Language (SL)

* Minimal language for demonstration and documentation
* Similar to JavaScript

* Included in the OpenJDK Graal repository

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

23

Setup

hg clone http://hg.openjdk.java.net/graal/graal

cd graal

./mx.sh --vm server build

./mx.sh ideinit

Or just Google ‘graal openjdk’

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

public class SLIfNode extends SLStatementNode {
@Child private SLExpressionNode conditionNode;
@Child private SLStatementNode thenPartNode;
@Child private SLStatementNode elsePartNode;

public SLIfNode(SLExpressionNode conditionNode,
SLStatementNode thenPartNode, SLStatementNode elsePartNode) {
this.conditionNode = conditionNode;
this.thenPartNode thenPartNode;
this.elsePartNode elsePartNode;

}

public void executeVoid(VirtualFrame frame) {
if (conditionNode.executeBoolean(frame)) {
thenPartNode.executeVoid(frame);
1} else {
elsePartNode.executeVoid(frame);

}
}
}

ORACLE

public class SLBlockNode extends SLStatementNode {
@Children private final SLStatementNode[] bodyNodes;

public SLBlockNode(SLStatementNode[] bodyNodes) {
this.bodyNodes = adoptChildren(bodyNodes);
}

@ExplodeLoop
public void executeVoid(VirtualFrame frame) {
for (SLStatementNode statement : bodyNodes) {
statement.executeVoid(frame);

}

}
}

ORACLE

public class SLReturnNode extends SLStatementNode {
@Child private SLExpressionNode valueNode;

public void executeVoid(VirtualFrame frame) {
throw new SLReturnExceptn(valueNode.executeGeneric(frame));

}
}

public class SLFunctionBodyNode extends SLExpressionNode {
@Child private SLStatementNode bodyNode;

public Object executeGeneric(VirtualFrame frame) {

try {
bodyNode.executeVoid(frame);

} catch (SLReturnException ex) {
return ex.getResult();

}
return SLNull.SINGLETON; public class SLReturnException
} extends ControlFlowException {
} private final Object result;
}

ORACLE

public class SLAddNode extends SLExpressionNode {
@Child private SLExpressionNode leftNode;
@Child private SLExpressionNode rightNode;

@Override

public Object executeGeneric(VirtualFrame frame) {
Object left = leftNode.executeGeneric(frame);
Object right = rightNode.executeGeneric(frame);

if (left instanceof Long && right instanceof Long) {
try {
return ExactMath.addExact((Long) left, (Long) right);
} catch (ArithmeticException ex) { }

}

if (left instanceof Long) {
left = BigInteger.valueOf((Long) Lleft);

}
if (right instanceof Long) {

right = BigInteger.valueOf((Long) right);

}

if (left instanceof BigInteger && right instanceof BiglInteger) {
return ((BigInteger) left).add((BigInteger) right);

}

if (left instanceof String || right instanceof String) {
return left.toString() + right.toString();

}

throw new UnsupportedSpecializationException(this, ...);

ORACLE

public Object executeGeneric(VirtualFrame frame) {
Object left = leftNode.executeGeneric(frame);
Object right = rightNode.executeGeneric(frame);

if (left instanceof Long && right instanceof Long) {
try {
return ExactMath.addExact((Long) left, (Long) right);
} catch (ArithmeticException ex) { }

¥

if (left instanceof Long) {
left = BigInteger.valueOf((Long) Lleft);

}

if (right instanceof Long) {
right = BigInteger.valueOf((Long) right);

}

if (left instanceof BigInteger && right instanceof BigInteger) {
return ((BigInteger) left).add((BigInteger) right);

¥

if (left instanceof String || right instanceof String) {
return left.toString() + right.toString();

¥

ORACLE

@Specialization(rewriteOn = ArithmeticException.class)
protected long add(long left, long right) {

return ExactMath.addExact(left, right);
}

@Specialization

protected BigInteger add(BigInteger left, BigInteger right) {
return left.add(right);

}

@Specialization(guards = "isString")

protected String add(Object left, Object right) {
return left.toString() + right.toString();

}

protected boolean isString(Object a, Object b) {
return a instanceof String || b instanceof String;
}

ORACLE

Ruby in Truffle and Graal

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

31

Introduction to Ruby

Imperative, object oriented, dynamically typed

Inspirations from Smalltalk and Perl

Widely used with the Rails framework for web applications

But also used in graphics, bioinformatics, systems, etc

Ruby Logo (Copyright (c) 2006, Yukihiro Matsumoto. Licensed under the terms of Creative Commons Attribution-ShareAlike 2.5.)

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 32

Ruby Implementations - MRI

A

Implemented in C

Bytecode interpreter

Very simple optimisations — inline caches in instructions

Probably the slowest commonly used interpreter there is

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Ruby Implementations - Rubinius

* Implemented in C++ and Ruby
* Uses an LLVM-based JIT

Rubinius logo copyright 2011 Roger Bacardit. Attribution-NoDerivs 3.0 Unported (CC BY-ND 3.0)

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 34

Ruby Implementations - Topaz

* Implemented in RPython
* Interpreter is statically compiled to native code via C

* Ruby code is compiled using a tracing JIT compiler

PyPy logo http://www.pypy.org/

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 35

Ruby Implementations - JRuby

& Ruby

Implemented in Java

Driver and primary user of JSR 292 (invokedynamic) until Nashorn
AST interpreter -> bytecode compiler - > JIT by JVM

Now looking at their own IR before bytecode

ORACLE

JRuby Logo (Copyright (c) 2011, Tony Price. Licensed under the terms of Creative Commons
Attribution-NoDerivs 3.0 Unported (CC BY-ND 3.0)).

Ruby Implementations — JRuby+Truffle

“}RUbY @ Truffle

Uses JRuby’s parser and limited parts of their runtime

Currently not much more than a tenant within JRuby

AST interpreter, written using Truffle

Works on a normal JVM

Can implicitly use Graal VM

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 37

Benchmarks

* chunky png and psd.rb
* Real code, unmodified from the original libraries

* Range of styles of Ruby code:

— High performance tight numerical loops with local variables
— Object oriented code such as method calls and instance variables
— Ruby dynamic programming features such as #send

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 38

Performance on chunky png and psd.rb

[
N

[y
o

[e¢]

[o)]

Speedup Relative to MRI (s/s)

o N »

Qs . OQ . \\)(9 N OQ ré\’ ‘Q* S&e
\} <& 8 & (R & S
£ N £ X
< < >
\X X \Q\
Ny W
*6\0
Q\\)

chrisseaton.com/rubytruffle/pushing-pixels

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

ORACLE

39

new r = blend _channel(r(bg), r(fg), mix_alpha)

def method _missing(method, *args, &block)
return ChunkyPNG: :Color.send(method, *args) <
if ChunkyPNG: :Color.respond _to?(method)
normal(*args)
end

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

40

module Foo
extend self

class Bar

def method missing(method, *args)
if Foo.respond_to?(method)
Foo.send(method, *args)

def foo(a, b, c)
hash = {a: a, b: b, c: c}
array = hash.map { |k, v| v }

else
X = array[0] 0
= b, c].sort[1]
i X 53: ’ . end
end
end
end
end

Bar.new.foo(14, 8, 6) => 22

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

50

I
o

N
o

w
w

w
o

N
o

[any
v

Speedup Relative to MRI (s/s)

[any
o

ORACLE

MRI

Rubinius JRuby Topaz

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Truffle

42

Hello World on Substrate VM

[msec] ExecutionTime [MByte] Memory Footprint
800 60
50
600
40
400 30
20
200
10 T ‘”
0 NS e e .
JRuby Trufﬂeon Truffle on MRI JRuby Truffle on Truffle on
JVM SVM JVM SVM

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

RubySpec

100% -
80% -
60% -

40% -

Langauge Specs Passing

20%

0% -

ORACLE

MRI

JRuby Rubinius Topaz

Truffle

rubyspec.org — thanks to Brian Shirai et al

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

44

Language Feature Implemented _

Fixnum to Bignum promotion v
Support for floating point
Closures

Bindings and eval Works from aliased methods
callcc and Continuation Limited support, the same as JRuby
Fibers Limited support, the same as JRuby
Frame local variables
C extensions Early work, but runs real C extensions
Ruby 1.9 encoding

Garbage collection
Concurrency and parallelism We currently use a GIL
Tracing and debugging Always enabled
ObjectSpace Always enabled

Method invalidation

S N S N SN SN SN SN N N N N NS K

Constant invalidation

Ruby on Rails

Charles Nutter: ‘So You Want to Optimize Ruby’ http://blog.headius.com/2012/10/so-you-want-to-optimize-ruby.html

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 45

Language Feature Implemented m

Fixnum to Bignum promotion
Closures

Bindings and eval

Garbage collection

Tracing and debugging
ObjectSpace

Method invalidation

Constant invalidation

v

AN NN N NN

Always enabled

Always enabled

Charles Nutter: ‘So You Want to Optimize Ruby’ http://blog.headius.com/2012/10/so-you-want-to-optimize-ruby.html

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

46

Setup

git clone https://github.com/jruby/jruby.git

cd jruby

mvn package

Or just Google ‘jruby truffle wiki’

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Fixnum to Bighum Promotion

Fixnum — fixed integer: C int64_t or Java long

Bignhum — arbitrary integer: Cmpz_t orJava BigInteger

Fixnum overflows to Bignum

Bignum underflows (?) to Fixnum

Entirely different classes — programmer can tell the difference

Unlike JavaScript and Python

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 48

Closures

* Anonymous functions that capture a lexical scope

* Called ‘blocks’ in Ruby — higher order methods

x = 14
my array = [1, 2, 3, 4]
my_array.each do |n|

puts X + n
end

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

49

Closures

* Anonymous functions that capture a lexical scope

* Called ‘blocks’ in Ruby — higher order methods

X = 14;
my array = [1, 2, 3, 4];

my_array.each(function(n) {
console.log(x + n);

})s

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

50

Bindings and Eval

* Binding: get an environment as an object

* eval: as you'd expect, also lets you supply a Binding

def foo
a =1
b = 2
binding
end

puts foo.local variable get(:a)

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

51

Bindings and Eval

* Binding: get an environment as an object

* eval: as you'd expect, also lets you supply a Binding

alias :secret _binding :binding

def foo
a =1
b = 2
secret_binding
end

puts foo.local variable get(:a)

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

52

Method and Constant Invalidation

* Ruby lets you define methods — ‘monkey patching’

class Fixnum
def *(b)
self + b
end
end

puts 14 * 2 => 16 (not 28)

ORACLE

ORACLE

class Fixnum
def *(b)
eval "
class Object::Fixnum
def /(b)
self - b
end
end

self + b
end
end

puts 14 * 2 / 4 => 12 (not 4 or 7)

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

54

Tracing and Debugging

* set_trace func allows you to install a method to be run on
every line

* Behind a —debug flag in JRuby, not supported in Rubinius

set_trace_func proc { |line, binding]
puts “We’re at line number #{line}”

¥

X 1 => “We’re at line number 6”
y =2 => “We’re at line number 7%

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 55

Debug action
installed by user

Inactive assumption
check completely elided
in compiled code

\/
> > >
Compile: produces Deoptimize: Replace: the
partially evaluated transfers control inactive node with
machine code from the machine an active node to
from specialized code back to the install the debug
AST. AST interpreter. action

ORACLE

O inactive
‘ active

>

Compile: produces
new machine code

from the modified
AST and the installed

debug action.

Self Relative Time (s/s)

10000

MR| o
Rubinius
JRuby mmm
1000 | Topaz mmm
JRuby+Truffle ==

100

-
o

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

57

ObjectSpace

* ObjectSpace allows you to enumerate all live objects
* Behind a flag —X+0 in JRuby

* How to find all live objects in a JVM?

ObjectSpacet#teach object do |0
puts o
end

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

58

Wrap Up

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

59

Get Involved

Now is a great time to get involved in Truffle and Graal

Personal opinion: I'd like to see them in JDK 9 in about 2 years

Areas open for research: concurrency, parallelism,
heterogeneous offload, language interoperability

Build your language research on top of Truffle and Graal

Implement a language: Haskell, Erlang, Swift, Clojure, PHP

Design and implement an entirely new language

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 60

Get Involved

http://openjdk.java.net/projects/graal/

graal-dev@openjdk.java.net

Documentation admittedly a little bit limited so far
Look at SL and Ruby

chris.seaton@oracle.com

@ChrisGSeaton

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 61

Many people behind Truffle and Graal

Oracle Labs

Danilo Ansaloni
Daniele Bonetta
Laurent Daynes

Erik Eckstein
Michael Haupt

Mick Jordan

Peter Kessler
Christos Kotselidis
David Leibs

Tom Rodriguez
Roland Schatz

Doug Simon

Lukas Stadler
Michael Van De Vanter
Christian Wimmer
Christian Wirth
Mario Wolczko
Thomas Wiirthinger
Laura Hill (Manager)

Interns
Shams Imam
Stephen Kell

ORACLE

Gregor Richards
Rifat Shariyar

JKU Linz

Prof. Hanspeter Mdssenbdck
Gilles Duboscq
Matthias Grimmer
Christian Haubl
Josef Haider
Christian Humer
Christian Huber
Manuel Rigger
Bernhard Urban
Andreas Wol

University of Manchester
Chris Seaton

University of Edinburgh
Christophe Dubach
Juan José

Fumero Alfonso
Ranjeet Singh

Toomas Remmelg

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

LaBRI
Floréal Morandat

University of California, Irvine
Prof. Michael Franz

Codrut Stancu

Gulfem Savrun Yeniceri

Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj

Lei Zhao

T. U. Dortmund

Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis

Prof. Duncan Temple Lang
Nicholas Ulle

62

Safe Harbor Statement

The preceding is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. Oracle reserves the right to alter its development plans and practices
at any time, and the development, release, and timing of any features or
functionality described in connection with any Oracle product or service remains
at the sole discretion of Oracle. Any views expressed in this presentation are my
own and do not necessarily reflect the views of Oracle.

ORACLE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 63

Hardware and Software
Engineered to Work Together

ORACLE

ORACLE

