s It Possible to Code an
Efficient Software Switch?

Linearizing the Heap, and the Pervasive Use of Hardware Accelerators

Nick Mitchell
along with loana Baldini, Peter Sweeney
IBM T.J. Watson Research Center

July 31, 2014

What Nick Does:
Work with IBM customers and
developers to make their
applications run well

the data herein is backed by thousands of real apps

Summer School Means
Nick Learns At Least As Much
From You, AS You From HIm

0. The Apps

Most of Our Data Comes
from Somewhere Else

Request

Response

Your Service

— .

. —

| My Service

-
—

ongo

D

\ adoop

3

FPGA, GPU

Fach Source Has its Own Wire Protocol

Request

Response

HTTP

Your Service

HTTP

My Service

BSON _ [\/longoDB

-

e
RPC >

adoop
streamin
binary

FPGA, GPU

Each Service Has its Operational Form

Myﬂce

Solutions Denied:

(but worth learning from)

kKeep everything In memory
code In a systems language

summary

Programmers are plumbers who write software switches

ECOOP Languages offer poor support for efficient
software switches, because of the distance between
operational and wire forms

Amdahl’'s Law strikes again, severely limiting the use of
specialized computational circuitry

What are our options for doing better?

1. Initial Thought Exercises

Implement an Efficient Map

HashMap

a conventional
chained hash map

Entry

Entry

\4

\/

—
—— T

— >
—— T

g | L]

~3 pointers per entry
~3-5 cache misses per GET
copying required for RPC

Implement This Without
Copying Any Bits Into the Heap

Java Heap

update this value

String

Implement an Efficient String

4-8 bytes of data
24-50 bytes of non-data
8—33% efficiency

characters

2. Programmers as
Plumbers

-Oor Example...

(a JAX-RS RESTtul web app)

(“cart/add”)
(MediaType.MULTIPART_FORM_DATA)
(MediaType.APPLICATON_JSON)

Response addToCart((“session”) Cookie session,
(“item”) int itemCode,
(“quantity”) int quantity) {

ShoppingCart cart = new ShoppingCart(session);
cart.add(itemCode, quantity);
return Response.ok(cart.status())

.cookie(cart.toCookie())
build();

Dispatch and Routing

(“cart/add”)

Protocol Unwrapping

(MediaType.MULTIPART_FORM_DATA)

(“session”) Cookie session,
(“item”) int itemCode,
(“quantity”) int quantity) {

Deserialization Iinto
Application Data Structures

ShoppingCart cart = new ShoppingCart(session);

Application Logic!

cart.add(itemCode, quantity);

(a lonely increment operation)

Serialize Application Data
Structures Back into a Response

return Response.ok(cart.status())

.cookie(cart.toCookie())
build();

Marshalling and Data Formats

operational form wire form

fransfer

serialize deserialize

3. The Profitability
Threshold

Trade-ofts

At what point does externalizing a computation
become more pain than it's worth”

granularity of kernel
cost of externalization Amdahl’s Law
accelerator speedup

Tuned Kernel Grows Smaller =—

Amdahl's Law

Offloading Computation Helps

m
>
X
@
D)
O
N
AV
—
®
D)
<
®
S
@
[T
>

IS
o
D)
2
<
@

Amdahl’s Law

make kernel 6.25% faster

Externalization More EXpensive =—————

free externalization,
kernel is 100% of overall computation

Amdahl’s Law

make kernel 6.25% faster

Externalization More EXpensive =—————

externalization equivalent to 1% of overall computation,
kernel is 100% of overall computation

Amdahl’s Law

make kernel 12.5% faster

Amdahl’s Law

make kernel 25% faster

9.89%

11.11%

12.36%

Amdahl’s Law

make kernel 50% faster

Amdahl’s Law

make kernel 2x faster

21.21%

25.00%

21.2
25.00%
29.03%
% 25.00%

29.03%

100.00% 81.82% .67% .85% o 33.33% 25.00%

Amdahl’s Law

make kernel 4x faster

17.65% | 11.11% 0.00%
23.08% 15.94%
29.03% | 21.21% | 14.29% o| 2.56%
26.98% 19.40% b 6.67% 1.27%
25.00% 7.65% | 11.11%| 526% | 0.00%
31.15% .08% 94% | 9.59% 3.90%
1429% | 8.11% | 2.56%
19.40% | 1268% | 6.67% | 1.27%
42.86% 33%| 25.00% | 17.65% | 11.11%| 526% 0.00%

50.94% 31.15% 23.08% 15.94% 9.59% 3.90%

60.00% 7.93% | 29.03% 14.29% | 8.11% | 2.56%

128.57% 05. 05% 70.21% 19.40% 12.68% 6.67% 1.27%

150.00% % | 100.00% 25.00% 17.65% 11.11% 5.26%

175.86% | 142.42% 116.22% | 95.12% | 77.78% 27% | 50.949

3.08% 15.94%

b 67% | 135.29% | 110.53% 91% | 60.00% 21.21% | 14.29% 8.11% | 2.56%

247.83% 30% | 158.06% 128.57% @ 105.13% 5.05% | 70.21% 06.98% 19.40% | 12.68% 6.67% 1.07%

300.00% 33% | 185.71% 22% | 100.00% 81.82%

33.33% | 25.00% | 17.65% 11.11%| 5.26%| 0.00%

Amdahl's Law

make kernel 8x faster

4.58%
9.59% 3.90%
8.84%
21.21% 14.29%
28.00% 20.30%
5.59% 5.98% 12.68% 67% 1.27%
18.52% 0 5.96% 0.63%
25.00% ° 11.11% 5.26%
32.23% 16.79% 10.34% 4.58%
40.35% ° 08% 15.94% 9.59% 3.90%
61.62% 49.53% A3% 22.14% 1% 8.84% 3.23%
110.53% A48% 73.91% 60.00% 48.15% 29.03% 21% 14.29% 8.11% 2.56%
131.88% 88.24% 72.04% 58.42% : Yo 20.30% 13.48% 7.38%
105.13% 86.05% 70.21% .86% 45.45% .59% 26.98% 19.40% 12.68%
125.35% | 102.53% 83.91% .34% 34.45% .98% 18.52% 11.89% 5.96%
150.00% | 122.22% | 100.00% 31.82% 67% .85% 42.86% .33% 25.00% 17.65% 11.11%
180.70% | 146.15% 119.18% 79.78% 54.95% 52.38% 41.59% 32.23% 24.03% 16.79%

220.00% | 175.86% 142.42% | 116.22% 12% 78% 63. 40.35% 31.15% 23.08% 15.94% 9.59% 3.90%
7

27"
75.82% .62% 49.53% 9.13% 22.14% 15.11% 8.84%

272.09% | 213.73% | 171.19% | 138.81%

700.00% | 471.43% | 344.44°% 263.64% | 207.69% 166.67% .29% .53% 0.48% 91% 60.00% 48.15% .93% 29.03% 21.21% 14.29%

Amdahl's Law

make kernel 16x faster

15.94% 9.59% 3.90%
2261% | 1552% | 9.22% 3.56%
2214% | 15.11%| 8.84%
48.84% 8.53% | 29.55% | 21.67% | 14.70% 3.47% | 2.89%
60.00% | 48.15% 7.93% | 29.03% 21% | 14.29% 8.11% | 2.56%
72.97% 20% | 47.47% | 37.34% 51% | 20.75% 13.88% 7.74%
88.24% 42% 75% | 28.00% 20.30% | 13.48% 1.91%
128.57% % | 86.05% 70.21% 86% | 45.45% 59% 40% | 12.68% | 6.67%
156.00% 95% 103.82% 84.97% 31% 10% 44.80% .02% 48% 18.96%
190.91% 97% 35% | 102.53% 83.91% 34% | 44.14% 4.45% 25.98% 11.89%
236.84% | 188.29% 97% | 123.78% 101.26% 4.59% 43.50% 18.08% 11.50% 5.61%
300.00% 33% | 185.71% | 150.00% | 122.22% | 100.00% 67% 85% 42.86% 33% | 25.00% | 17.65%| 11.11%
392.31% .| 229.90% | 183.19% 148.06% 120.69% 8.76% | 80.79% A1% | 42.22% | 32.78% | 2451% | 17.22%
540.00% | 384.85% 53% 180.70% | 146.15% | 119.18% 97.53% 78% 4.95% 38% | 41.59% | 32.23% | 24.03%

814.29% @ 527.45% 7.61% 35.54% 23% | 178.26% | 144.27% | 117.69% 78.77% 4.10% 51.66% 40.97% 31.69%

1500.00% 788.89% .38% .59% 80.95% | 220.00% | 175.86% | 142.42% .22% A2% 77.78% 63.27% 50.94% 40.35% 5% 23.08% 15.94%

5.09%
10.73%
17.00%
24.03%
31.96%

40.97%

138.81%

170.

680.49%
1154.90%

3100.00%

4.92%
10.54%
16.79%
23.79%
31.69%
40.66%
50.94%
62.85%
76.80%
93.35%

113.33%
137.92%
168.91%
209.18%
263.64%
341.38%
461.40%
671.08%

1130.77%

137.04%
167.78%

207.69%

30.88%

50.23%
62.03%
75.82%
92.19%

111.92%

111.22%

135.29%

165.56%

39.74%

91.62%

201.89%

Amdahl's Law

make kernel 32x faster

22.37%

30.08%

38.83%

48.84%

60.40%
73.91%
89.91%
109.15%
132.739

162.30%

°

°

9.22%
15.32%
22.14%
29.82%
38.53%
48.49%
60.00%
73
89.35%

108.47%

131.88%

3.56%
9.03%
15.11%

21.90%

72.97%
88.79%

107.79%

3.39%
8.84%
14.90%

21.67%

59.20%
72.51%

88.24%

3.23%
8.66% 3.06%
14.70% 8.47%
14.

21.21%

2.89%
8.29% 2.73%
14.29% 8.11%
20.98% 14.08%

20.53%

28.00%

4. The Costs of
Externalization

Rough Measurements

Object Churn

® 3000 temps to ingest one document

® /0 temps to turn a SOAP date (as
bytes) into a Java Calendar

® 0 temps to turn month into int

Fractal Webs
of Invocations

® 200k calls to ingest that document

® 2000 calls to turn an XML timecard
Into a Java data structure

(Sevitsky 2006)

Spending CPU Cycles

43% 32% I 21%
Serialization Application Logic
String Operations OF:telallgle
Intra-object Copying Encryption
Reflection

Data-driven Dispatching
Connection Management

Three Kinds of Expenses

43% 32%, I 21%
Optimizable Vital
Data Motion

Amortizable

Does the Story Vary?

All Data Sets

Analytics Apps

Web Apps

SPECjbb2013

SPECjEnterprise

trade

BENCHMARKS

What the JIT Doesn’t Catch

(numbers relative to original w/o JIT optimizations)

Copies
Comparisons

ALU ‘

|
Loads/Stores ‘
0% 25% 50% 75% 100%
original with JIT optimizations handtuned w/o JIT optimizations

(Xu 2009)

Allocate-Use Separation

Thread.run

Y N
Y\
Y N\
v

How much do we have to inline to have a
chance of removing temps and copies?

Method Inlining

% temps eliminated

base J9 inliner JOLT inliner

Eclipse 0.4% 1.9%
JPetStore on Spring 0.7% 2.5%
TPCW on JBoss 0% 4.3%
DaCapo 3.4% 13.3%

Small benchmarks
don’t reflect difficulties

Inlining Is hard!

(Shankar 2008)

40

Spending Memory

@1 Student occurs 40

000 bytes

COBOL vs Java

class Student {

}
Student[] data = new Student[40];

4492 bytes

(Suganuma 2008)

Overhead

0-10%

10-20%

20-30%

30-40%

40-50%

50-60%

60-70%

70-80%

80-90%

90-100%

Memory Overhead

0 125 250 375 500

Number of Heap Snapshots

5. Alternative
Marshalling Schemes

operational
form

optimize the
translation

wire form

Options

operational
form

wire form

transmit less

operational
form

wire form

transmit less

Options

Google protoburf,
Apache Thrift,
Apache Avro,
Scala Pickling

fedd

orotobut, avro, thrift

e declaratively specity schema of data

e automatically generate marshallers

struct Work {
1: 132 numl = 0,
2: 132 num2,
3: Operation op,
4: optional string comment,

¥

java-manual
protostuff-manual
protostuft

Kryo

protobuf
thrift-compact
thrift

avro

hessian
java-built-in
scala/java-built-in

Does It Matter”

relative time to serialize and deserialize an object

(htto://ganges.usc.edu/pgroupW/images/a/a9/Serializarion_Framework.pdf)

Does it Matter?

B Java
Kryo vl
Kryo v2
Scala Pickling
= = = Pickler Combinators
Unsafe Pickler Combinators

Time [ms]
\
n
S

0=—=
100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Number of Elements

(Miller 2013)

Experiment: specjbn2013

50%

40%

30%

20%

10%

Fraction of CPU Spent in Serialization

0%
10 15 20 25 30 60 90 120 240 300 600

Stack Sample Frequency (seconds)

0. Alternative Storage
Schemes

Value Types and Structs

struct Student {

}

pay the header COS.’[once per record

Ret Poisoning

.... unless we use a reference type

IN which case, we're l
baCk 'to Where We Started

Arrays of Records

struct Student {

}
Student[] data = new Student[10];

pay the header cost once per array

Marshalling Arrays of Records

struct Student {

J
Student[] data = new Studefpt[10];
RPC

pay the header cost @nce poer array gperaﬂgnm form
data[3].name.charAt(5) and wire form

10

c.t. Cobol

-
.
]
"
"
"
"
"
"y
" .

both are fine... until we need
to store non-scalar data,
.e. variable-length data

Column Stores

class Student {

Student # 1
Student #2
PROS Student # 3

maintains easily serializability
allows for mix-and-match use of attributes

CONS
added overhead (start and end pointers)
unspeakably horrible code

© o N O O

10

/. Alternative Compilation
Schemes
and
Optimizable Language Kernels

* Kiwi (Microsoft Research)

* Bluespec (MIT)

High-level Languages for
Targeting FPGAS

 LegUp (U. Toronto)

make It easier to write
computational kernels

 Lime (IBM Research)

asm.|S

Javascript

C/C++

/

LLVM

Browser JIT with
asm.|s support

RPYtNOoN (.. Truffie)

Python
Human codes interpreter

for language X

subset that is easier/

to optimize

T JIT for language X

Models vs Storage

class Student { >

BigDecimal score;

code IS hard to maintain,

NEEEEEEEEEN . .
or Impossible to express
INn the language, but
v ?. - performance is great
\/
E code Is easy to maintain,

but performance sucks

L owering...

class Student { n

— Can we lower from
one to the other?

L owering...

class Student { o>

| v What is lowering other than... a
! poartial evaluation of serialization”

Partial Marshal

class Student {

student.getName();

transformer?? transformer??

class StudehtTable {

students.getName(1);

names.splice(students.nameStart[i],
students.nameEnd([i]);

Partial Marshal

class Student {

data
modael

class StudentTable

student.getName();

data
access

students.getName(1);

names.splice(students.nameStart[i],
students.nameEnd([i]);

AttiC

All Data Sets

Batch A
Batch B

Framework T
Framework U
Framework Z
Framework Y
Framework X

Framework W

J2EE Provider A
jboss
J2EE Provider B

Analytics D
Analytics C
Analytics A
Analytics F
Analytics E

SPECjEnterprise

tradesoap

SPECjbb2013

tradebeans

